|
7 | 7 | from numpy.lib.stride_tricks import as_strided
|
8 | 8 |
|
9 | 9 | name_to_dtypes = {
|
10 |
| - "rgb8": (np.uint8, 3), |
11 |
| - "rgba8": (np.uint8, 4), |
12 |
| - "rgb16": (np.uint16, 3), |
13 |
| - "rgba16": (np.uint16, 4), |
14 |
| - "bgr8": (np.uint8, 3), |
15 |
| - "bgra8": (np.uint8, 4), |
16 |
| - "bgr16": (np.uint16, 3), |
17 |
| - "bgra16": (np.uint16, 4), |
18 |
| - "mono8": (np.uint8, 1), |
19 |
| - "mono16": (np.uint16, 1), |
| 10 | + "rgb8": (np.uint8, 3), |
| 11 | + "rgba8": (np.uint8, 4), |
| 12 | + "rgb16": (np.uint16, 3), |
| 13 | + "rgba16": (np.uint16, 4), |
| 14 | + "bgr8": (np.uint8, 3), |
| 15 | + "bgra8": (np.uint8, 4), |
| 16 | + "bgr16": (np.uint16, 3), |
| 17 | + "bgra16": (np.uint16, 4), |
| 18 | + "mono8": (np.uint8, 1), |
| 19 | + "mono16": (np.uint16, 1), |
20 | 20 |
|
21 | 21 | # for bayer image (based on cv_bridge.cpp)
|
22 |
| - "bayer_rggb8": (np.uint8, 1), |
23 |
| - "bayer_bggr8": (np.uint8, 1), |
24 |
| - "bayer_gbrg8": (np.uint8, 1), |
25 |
| - "bayer_grbg8": (np.uint8, 1), |
26 |
| - "bayer_rggb16": (np.uint16, 1), |
27 |
| - "bayer_bggr16": (np.uint16, 1), |
28 |
| - "bayer_gbrg16": (np.uint16, 1), |
29 |
| - "bayer_grbg16": (np.uint16, 1), |
| 22 | + "bayer_rggb8": (np.uint8, 1), |
| 23 | + "bayer_bggr8": (np.uint8, 1), |
| 24 | + "bayer_gbrg8": (np.uint8, 1), |
| 25 | + "bayer_grbg8": (np.uint8, 1), |
| 26 | + "bayer_rggb16": (np.uint16, 1), |
| 27 | + "bayer_bggr16": (np.uint16, 1), |
| 28 | + "bayer_gbrg16": (np.uint16, 1), |
| 29 | + "bayer_grbg16": (np.uint16, 1), |
30 | 30 |
|
31 | 31 | # OpenCV CvMat types
|
32 |
| - "8UC1": (np.uint8, 1), |
33 |
| - "8UC2": (np.uint8, 2), |
34 |
| - "8UC3": (np.uint8, 3), |
35 |
| - "8UC4": (np.uint8, 4), |
36 |
| - "8SC1": (np.int8, 1), |
37 |
| - "8SC2": (np.int8, 2), |
38 |
| - "8SC3": (np.int8, 3), |
39 |
| - "8SC4": (np.int8, 4), |
40 |
| - "16UC1": (np.uint16, 1), |
41 |
| - "16UC2": (np.uint16, 2), |
42 |
| - "16UC3": (np.uint16, 3), |
43 |
| - "16UC4": (np.uint16, 4), |
44 |
| - "16SC1": (np.int16, 1), |
45 |
| - "16SC2": (np.int16, 2), |
46 |
| - "16SC3": (np.int16, 3), |
47 |
| - "16SC4": (np.int16, 4), |
48 |
| - "32SC1": (np.int32, 1), |
49 |
| - "32SC2": (np.int32, 2), |
50 |
| - "32SC3": (np.int32, 3), |
51 |
| - "32SC4": (np.int32, 4), |
52 |
| - "32FC1": (np.float32, 1), |
53 |
| - "32FC2": (np.float32, 2), |
54 |
| - "32FC3": (np.float32, 3), |
55 |
| - "32FC4": (np.float32, 4), |
56 |
| - "64FC1": (np.float64, 1), |
57 |
| - "64FC2": (np.float64, 2), |
58 |
| - "64FC3": (np.float64, 3), |
59 |
| - "64FC4": (np.float64, 4) |
| 32 | + "8UC1": (np.uint8, 1), |
| 33 | + "8UC2": (np.uint8, 2), |
| 34 | + "8UC3": (np.uint8, 3), |
| 35 | + "8UC4": (np.uint8, 4), |
| 36 | + "8SC1": (np.int8, 1), |
| 37 | + "8SC2": (np.int8, 2), |
| 38 | + "8SC3": (np.int8, 3), |
| 39 | + "8SC4": (np.int8, 4), |
| 40 | + "16UC1": (np.uint16, 1), |
| 41 | + "16UC2": (np.uint16, 2), |
| 42 | + "16UC3": (np.uint16, 3), |
| 43 | + "16UC4": (np.uint16, 4), |
| 44 | + "16SC1": (np.int16, 1), |
| 45 | + "16SC2": (np.int16, 2), |
| 46 | + "16SC3": (np.int16, 3), |
| 47 | + "16SC4": (np.int16, 4), |
| 48 | + "32SC1": (np.int32, 1), |
| 49 | + "32SC2": (np.int32, 2), |
| 50 | + "32SC3": (np.int32, 3), |
| 51 | + "32SC4": (np.int32, 4), |
| 52 | + "32FC1": (np.float32, 1), |
| 53 | + "32FC2": (np.float32, 2), |
| 54 | + "32FC3": (np.float32, 3), |
| 55 | + "32FC4": (np.float32, 4), |
| 56 | + "64FC1": (np.float64, 1), |
| 57 | + "64FC2": (np.float64, 2), |
| 58 | + "64FC3": (np.float64, 3), |
| 59 | + "64FC4": (np.float64, 4) |
60 | 60 | }
|
61 | 61 |
|
62 | 62 | @converts_to_numpy(Image)
|
63 | 63 | def image_to_numpy(msg):
|
64 |
| - if not msg.encoding in name_to_dtypes: |
65 |
| - raise TypeError('Unrecognized encoding {}'.format(msg.encoding)) |
| 64 | + if not msg.encoding in name_to_dtypes: |
| 65 | + raise TypeError('Unrecognized encoding {}'.format(msg.encoding)) |
66 | 66 |
|
67 |
| - dtype_class, channels = name_to_dtypes[msg.encoding] |
68 |
| - dtype = np.dtype(dtype_class) |
69 |
| - dtype = dtype.newbyteorder('>' if msg.is_bigendian else '<') |
70 |
| - shape = (msg.height, msg.width, channels) |
| 67 | + dtype_class, channels = name_to_dtypes[msg.encoding] |
| 68 | + dtype = np.dtype(dtype_class) |
| 69 | + dtype = dtype.newbyteorder('>' if msg.is_bigendian else '<') |
| 70 | + shape = (msg.height, msg.width, channels) |
71 | 71 |
|
72 |
| - data = np.frombuffer(msg.data, dtype=dtype).reshape(shape) |
73 |
| - data.strides = ( |
74 |
| - msg.step, |
75 |
| - dtype.itemsize * channels, |
76 |
| - dtype.itemsize |
77 |
| - ) |
| 72 | + data = np.frombuffer(msg.data, dtype=dtype).reshape(shape) |
| 73 | + data.strides = ( |
| 74 | + msg.step, |
| 75 | + dtype.itemsize * channels, |
| 76 | + dtype.itemsize |
| 77 | + ) |
78 | 78 |
|
79 |
| - if channels == 1: |
80 |
| - data = data[...,0] |
81 |
| - return data |
| 79 | + if channels == 1: |
| 80 | + data = data[...,0] |
| 81 | + return data |
82 | 82 |
|
83 | 83 |
|
84 | 84 | @converts_from_numpy(Image)
|
85 | 85 | def numpy_to_image(arr, encoding):
|
86 |
| - if not encoding in name_to_dtypes: |
87 |
| - raise TypeError('Unrecognized encoding {}'.format(encoding)) |
88 |
| - |
89 |
| - im = Image(encoding=encoding) |
90 |
| - |
91 |
| - # extract width, height, and channels |
92 |
| - dtype_class, exp_channels = name_to_dtypes[encoding] |
93 |
| - dtype = np.dtype(dtype_class) |
94 |
| - if len(arr.shape) == 2: |
95 |
| - im.height, im.width, channels = arr.shape + (1,) |
96 |
| - elif len(arr.shape) == 3: |
97 |
| - im.height, im.width, channels = arr.shape |
98 |
| - else: |
99 |
| - raise TypeError("Array must be two or three dimensional") |
100 |
| - |
101 |
| - # check type and channels |
102 |
| - if exp_channels != channels: |
103 |
| - raise TypeError("Array has {} channels, {} requires {}".format( |
104 |
| - channels, encoding, exp_channels |
105 |
| - )) |
106 |
| - if dtype_class != arr.dtype.type: |
107 |
| - raise TypeError("Array is {}, {} requires {}".format( |
108 |
| - arr.dtype.type, encoding, dtype_class |
109 |
| - )) |
110 |
| - |
111 |
| - # make the array contiguous in memory, as mostly required by the format |
112 |
| - contig = np.ascontiguousarray(arr) |
113 |
| - im.data = contig.tostring() |
114 |
| - im.step = contig.strides[0] |
115 |
| - im.is_bigendian = ( |
116 |
| - arr.dtype.byteorder == '>' or |
117 |
| - arr.dtype.byteorder == '=' and sys.byteorder == 'big' |
118 |
| - ) |
119 |
| - |
120 |
| - return im |
| 86 | + if not encoding in name_to_dtypes: |
| 87 | + raise TypeError('Unrecognized encoding {}'.format(encoding)) |
| 88 | + |
| 89 | + im = Image(encoding=encoding) |
| 90 | + |
| 91 | + # extract width, height, and channels |
| 92 | + dtype_class, exp_channels = name_to_dtypes[encoding] |
| 93 | + dtype = np.dtype(dtype_class) |
| 94 | + if len(arr.shape) == 2: |
| 95 | + im.height, im.width, channels = arr.shape + (1,) |
| 96 | + elif len(arr.shape) == 3: |
| 97 | + im.height, im.width, channels = arr.shape |
| 98 | + else: |
| 99 | + raise TypeError("Array must be two or three dimensional") |
| 100 | + |
| 101 | + # check type and channels |
| 102 | + if exp_channels != channels: |
| 103 | + raise TypeError("Array has {} channels, {} requires {}".format( |
| 104 | + channels, encoding, exp_channels |
| 105 | + )) |
| 106 | + if dtype_class != arr.dtype.type: |
| 107 | + raise TypeError("Array is {}, {} requires {}".format( |
| 108 | + arr.dtype.type, encoding, dtype_class |
| 109 | + )) |
| 110 | + |
| 111 | + # make the array contiguous in memory, as mostly required by the format |
| 112 | + contig = np.ascontiguousarray(arr) |
| 113 | + im.data = contig.tostring() |
| 114 | + im.step = contig.strides[0] |
| 115 | + im.is_bigendian = ( |
| 116 | + arr.dtype.byteorder == '>' or |
| 117 | + arr.dtype.byteorder == '=' and sys.byteorder == 'big' |
| 118 | + ) |
| 119 | + |
| 120 | + return im |
0 commit comments