Skip to content

Commit 45e06f7

Browse files
committed
Reorder methods by lexicographical order
1 parent 3549b5d commit 45e06f7

File tree

1 file changed

+153
-153
lines changed

1 file changed

+153
-153
lines changed

dpnp/dpnp_array.py

Lines changed: 153 additions & 153 deletions
Original file line numberDiff line numberDiff line change
@@ -113,159 +113,6 @@ def __init__(
113113
array_namespace=dpnp,
114114
)
115115

116-
@property
117-
def __sycl_usm_array_interface__(self):
118-
"""
119-
Give ``__sycl_usm_array_interface__`` dictionary describing the array.
120-
121-
"""
122-
return self._array_obj.__sycl_usm_array_interface__
123-
124-
def get_array(self):
125-
"""Get :class:`dpctl.tensor.usm_ndarray` object."""
126-
return self._array_obj
127-
128-
@property
129-
def T(self):
130-
"""
131-
View of the transposed array.
132-
133-
Same as ``self.transpose()``.
134-
135-
See Also
136-
--------
137-
:obj:`dpnp.transpose` : Equivalent function.
138-
139-
Examples
140-
--------
141-
>>> import dpnp as np
142-
>>> a = np.array([[1, 2], [3, 4]])
143-
>>> a
144-
array([[1, 2],
145-
[3, 4]])
146-
>>> a.T
147-
array([[1, 3],
148-
[2, 4]])
149-
150-
>>> a = np.array([1, 2, 3, 4])
151-
>>> a
152-
array([1, 2, 3, 4])
153-
>>> a.T
154-
array([1, 2, 3, 4])
155-
156-
"""
157-
158-
return self.transpose()
159-
160-
@property
161-
def mT(self):
162-
"""
163-
View of the matrix transposed array.
164-
165-
The matrix transpose is the transpose of the last two dimensions, even
166-
if the array is of higher dimension.
167-
168-
Raises
169-
------
170-
ValueError
171-
If the array is of dimension less than ``2``.
172-
173-
Examples
174-
--------
175-
>>> import dpnp as np
176-
>>> a = np.array([[1, 2], [3, 4]])
177-
>>> a
178-
array([[1, 2],
179-
[3, 4]])
180-
>>> a.mT
181-
array([[1, 3],
182-
[2, 4]])
183-
184-
>>> a = np.arange(8).reshape((2, 2, 2))
185-
>>> a
186-
array([[[0, 1],
187-
[2, 3]],
188-
[[4, 5],
189-
[6, 7]]])
190-
>>> a.mT
191-
array([[[0, 2],
192-
[1, 3]],
193-
[[4, 6],
194-
[5, 7]]])
195-
196-
"""
197-
198-
if self.ndim < 2:
199-
raise ValueError("matrix transpose with ndim < 2 is undefined")
200-
201-
return dpnp_array._create_from_usm_ndarray(self._array_obj.mT)
202-
203-
@property
204-
def device(self):
205-
"""
206-
Return :class:`dpctl.tensor.Device` object representing residence of
207-
the array data.
208-
209-
The ``Device`` object represents Array API notion of the device, and
210-
contains :class:`dpctl.SyclQueue` associated with this array. Hence,
211-
``.device`` property provides information distinct from ``.sycl_device``
212-
property.
213-
214-
Examples
215-
--------
216-
>>> import dpnp as np
217-
>>> x = np.ones(10)
218-
>>> x.device
219-
Device(level_zero:gpu:0)
220-
221-
"""
222-
223-
return self._array_obj.device
224-
225-
@property
226-
def sycl_context(self):
227-
"""
228-
Return :class:`dpctl.SyclContext` object to which USM data is bound.
229-
230-
"""
231-
return self._array_obj.sycl_context
232-
233-
@property
234-
def sycl_device(self):
235-
"""
236-
Return :class:`dpctl.SyclDevice` object on which USM data was
237-
allocated.
238-
239-
"""
240-
return self._array_obj.sycl_device
241-
242-
@property
243-
def sycl_queue(self):
244-
"""
245-
Return :class:`dpctl.SyclQueue` object associated with USM data.
246-
247-
"""
248-
return self._array_obj.sycl_queue
249-
250-
@property
251-
def usm_type(self):
252-
"""
253-
USM type of underlying memory. Possible values are:
254-
255-
* ``"device"``
256-
USM-device allocation in device memory, only accessible to kernels
257-
executed on the device
258-
* ``"shared"``
259-
USM-shared allocation in device memory, accessible both from the
260-
device and from the host
261-
* ``"host"``
262-
USM-host allocation in host memory, accessible both from the device
263-
and from the host
264-
265-
"""
266-
267-
return self._array_obj.usm_type
268-
269116
def __abs__(self):
270117
"""Return :math:`|self|`."""
271118
return dpnp.abs(self)
@@ -719,6 +566,14 @@ def __sub__(self, other):
719566

720567
# '__subclasshook__',
721568

569+
@property
570+
def __sycl_usm_array_interface__(self):
571+
"""
572+
Give ``__sycl_usm_array_interface__`` dictionary describing the array.
573+
574+
"""
575+
return self._array_obj.__sycl_usm_array_interface__
576+
722577
def __truediv__(self, other):
723578
"""Return :math:`self/value`."""
724579
return dpnp.true_divide(self, other)
@@ -1146,6 +1001,28 @@ def data(self):
11461001

11471002
return dpm.create_data(self._array_obj)
11481003

1004+
@property
1005+
def device(self):
1006+
"""
1007+
Return :class:`dpctl.tensor.Device` object representing residence of
1008+
the array data.
1009+
1010+
The ``Device`` object represents Array API notion of the device, and
1011+
contains :class:`dpctl.SyclQueue` associated with this array. Hence,
1012+
``.device`` property provides information distinct from ``.sycl_device``
1013+
property.
1014+
1015+
Examples
1016+
--------
1017+
>>> import dpnp as np
1018+
>>> x = np.ones(10)
1019+
>>> x.device
1020+
Device(level_zero:gpu:0)
1021+
1022+
"""
1023+
1024+
return self._array_obj.device
1025+
11491026
def diagonal(self, offset=0, axis1=0, axis2=1):
11501027
"""
11511028
Return specified diagonals.
@@ -1293,6 +1170,10 @@ def flatten(self, order="C"):
12931170

12941171
return self.reshape(-1, order=order, copy=True)
12951172

1173+
def get_array(self):
1174+
"""Get :class:`dpctl.tensor.usm_ndarray` object."""
1175+
return self._array_obj
1176+
12961177
# 'getfield',
12971178

12981179
@property
@@ -1453,6 +1334,49 @@ def min(
14531334
where=where,
14541335
)
14551336

1337+
@property
1338+
def mT(self):
1339+
"""
1340+
View of the matrix transposed array.
1341+
1342+
The matrix transpose is the transpose of the last two dimensions, even
1343+
if the array is of higher dimension.
1344+
1345+
Raises
1346+
------
1347+
ValueError
1348+
If the array is of dimension less than ``2``.
1349+
1350+
Examples
1351+
--------
1352+
>>> import dpnp as np
1353+
>>> a = np.array([[1, 2], [3, 4]])
1354+
>>> a
1355+
array([[1, 2],
1356+
[3, 4]])
1357+
>>> a.mT
1358+
array([[1, 3],
1359+
[2, 4]])
1360+
1361+
>>> a = np.arange(8).reshape((2, 2, 2))
1362+
>>> a
1363+
array([[[0, 1],
1364+
[2, 3]],
1365+
[[4, 5],
1366+
[6, 7]]])
1367+
>>> a.mT
1368+
array([[[0, 2],
1369+
[1, 3]],
1370+
[[4, 6],
1371+
[5, 7]]])
1372+
1373+
"""
1374+
1375+
if self.ndim < 2:
1376+
raise ValueError("matrix transpose with ndim < 2 is undefined")
1377+
1378+
return dpnp_array._create_from_usm_ndarray(self._array_obj.mT)
1379+
14561380
@property
14571381
def nbytes(self):
14581382
"""Total bytes consumed by the elements of the array."""
@@ -1954,6 +1878,63 @@ def swapaxes(self, axis1, axis2):
19541878

19551879
return dpnp.swapaxes(self, axis1=axis1, axis2=axis2)
19561880

1881+
@property
1882+
def sycl_context(self):
1883+
"""
1884+
Return :class:`dpctl.SyclContext` object to which USM data is bound.
1885+
1886+
"""
1887+
return self._array_obj.sycl_context
1888+
1889+
@property
1890+
def sycl_device(self):
1891+
"""
1892+
Return :class:`dpctl.SyclDevice` object on which USM data was
1893+
allocated.
1894+
1895+
"""
1896+
return self._array_obj.sycl_device
1897+
1898+
@property
1899+
def sycl_queue(self):
1900+
"""
1901+
Return :class:`dpctl.SyclQueue` object associated with USM data.
1902+
1903+
"""
1904+
return self._array_obj.sycl_queue
1905+
1906+
@property
1907+
def T(self):
1908+
"""
1909+
View of the transposed array.
1910+
1911+
Same as ``self.transpose()``.
1912+
1913+
See Also
1914+
--------
1915+
:obj:`dpnp.transpose` : Equivalent function.
1916+
1917+
Examples
1918+
--------
1919+
>>> import dpnp as np
1920+
>>> a = np.array([[1, 2], [3, 4]])
1921+
>>> a
1922+
array([[1, 2],
1923+
[3, 4]])
1924+
>>> a.T
1925+
array([[1, 3],
1926+
[2, 4]])
1927+
1928+
>>> a = np.array([1, 2, 3, 4])
1929+
>>> a
1930+
array([1, 2, 3, 4])
1931+
>>> a.T
1932+
array([1, 2, 3, 4])
1933+
1934+
"""
1935+
1936+
return self.transpose()
1937+
19571938
def take(self, indices, axis=None, out=None, mode="wrap"):
19581939
"""
19591940
Take elements from an array along an axis.
@@ -2249,3 +2230,22 @@ def view(self, dtype=None, *, type=None):
22492230
buffer=self,
22502231
strides=new_strides,
22512232
)
2233+
2234+
@property
2235+
def usm_type(self):
2236+
"""
2237+
USM type of underlying memory. Possible values are:
2238+
2239+
* ``"device"``
2240+
USM-device allocation in device memory, only accessible to kernels
2241+
executed on the device
2242+
* ``"shared"``
2243+
USM-shared allocation in device memory, accessible both from the
2244+
device and from the host
2245+
* ``"host"``
2246+
USM-host allocation in host memory, accessible both from the device
2247+
and from the host
2248+
2249+
"""
2250+
2251+
return self._array_obj.usm_type

0 commit comments

Comments
 (0)