|
| 1 | +//***************************************************************************** |
| 2 | +// Copyright (c) 2024, Intel Corporation |
| 3 | +// All rights reserved. |
| 4 | +// |
| 5 | +// Redistribution and use in source and binary forms, with or without |
| 6 | +// modification, are permitted provided that the following conditions are met: |
| 7 | +// - Redistributions of source code must retain the above copyright notice, |
| 8 | +// this list of conditions and the following disclaimer. |
| 9 | +// - Redistributions in binary form must reproduce the above copyright notice, |
| 10 | +// this list of conditions and the following disclaimer in the documentation |
| 11 | +// and/or other materials provided with the distribution. |
| 12 | +// |
| 13 | +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 14 | +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 16 | +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| 17 | +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | +// THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | +//***************************************************************************** |
| 25 | + |
| 26 | +#pragma once |
| 27 | + |
| 28 | +#define SYCL_EXT_ONEAPI_COMPLEX |
| 29 | +#if __has_include(<sycl/ext/oneapi/experimental/sycl_complex.hpp>) |
| 30 | +#include <sycl/ext/oneapi/experimental/sycl_complex.hpp> |
| 31 | +#else |
| 32 | +#include <sycl/ext/oneapi/experimental/complex/complex.hpp> |
| 33 | +#endif |
| 34 | + |
| 35 | +#include <sycl/sycl.hpp> |
| 36 | + |
| 37 | +// dpctl tensor headers |
| 38 | +#include "utils/type_utils.hpp" |
| 39 | + |
| 40 | +namespace dpnp::kernels::sinc |
| 41 | +{ |
| 42 | +namespace tu_ns = dpctl::tensor::type_utils; |
| 43 | + |
| 44 | +namespace impl |
| 45 | +{ |
| 46 | +namespace exprm_ns = sycl::ext::oneapi::experimental; |
| 47 | + |
| 48 | +template <typename Tp> |
| 49 | +inline Tp sin(const Tp &in) |
| 50 | +{ |
| 51 | + if constexpr (tu_ns::is_complex<Tp>::value) { |
| 52 | + using realTp = typename Tp::value_type; |
| 53 | + |
| 54 | + constexpr realTp q_nan = std::numeric_limits<realTp>::quiet_NaN(); |
| 55 | + |
| 56 | + realTp const &in_re = std::real(in); |
| 57 | + realTp const &in_im = std::imag(in); |
| 58 | + |
| 59 | + const bool in_re_finite = sycl::isfinite(in_re); |
| 60 | + const bool in_im_finite = sycl::isfinite(in_im); |
| 61 | + /* |
| 62 | + * Handle the nearly-non-exceptional cases where |
| 63 | + * real and imaginary parts of input are finite. |
| 64 | + */ |
| 65 | + if (in_re_finite && in_im_finite) { |
| 66 | + Tp res = exprm_ns::sin(exprm_ns::complex<realTp>(in)); // sin(in); |
| 67 | + if (in_re == realTp(0)) { |
| 68 | + res.real(sycl::copysign(realTp(0), in_re)); |
| 69 | + } |
| 70 | + return res; |
| 71 | + } |
| 72 | + |
| 73 | + /* |
| 74 | + * since sin(in) = -I * sinh(I * in), for special cases, |
| 75 | + * we calculate real and imaginary parts of z = sinh(I * in) and |
| 76 | + * then return { imag(z) , -real(z) } which is sin(in). |
| 77 | + */ |
| 78 | + const realTp x = -in_im; |
| 79 | + const realTp y = in_re; |
| 80 | + const bool xfinite = in_im_finite; |
| 81 | + const bool yfinite = in_re_finite; |
| 82 | + /* |
| 83 | + * sinh(+-0 +- I Inf) = sign(d(+-0, dNaN))0 + I dNaN. |
| 84 | + * The sign of 0 in the result is unspecified. Choice = normally |
| 85 | + * the same as dNaN. |
| 86 | + * |
| 87 | + * sinh(+-0 +- I NaN) = sign(d(+-0, NaN))0 + I d(NaN). |
| 88 | + * The sign of 0 in the result is unspecified. Choice = normally |
| 89 | + * the same as d(NaN). |
| 90 | + */ |
| 91 | + if (x == realTp(0) && !yfinite) { |
| 92 | + const realTp sinh_im = q_nan; |
| 93 | + const realTp sinh_re = sycl::copysign(realTp(0), x * sinh_im); |
| 94 | + return Tp{sinh_im, -sinh_re}; |
| 95 | + } |
| 96 | + |
| 97 | + /* |
| 98 | + * sinh(+-Inf +- I 0) = +-Inf + I +-0. |
| 99 | + * |
| 100 | + * sinh(NaN +- I 0) = d(NaN) + I +-0. |
| 101 | + */ |
| 102 | + if (y == realTp(0) && !xfinite) { |
| 103 | + if (std::isnan(x)) { |
| 104 | + const realTp sinh_re = x; |
| 105 | + const realTp sinh_im = y; |
| 106 | + return Tp{sinh_im, -sinh_re}; |
| 107 | + } |
| 108 | + const realTp sinh_re = x; |
| 109 | + const realTp sinh_im = sycl::copysign(realTp(0), y); |
| 110 | + return Tp{sinh_im, -sinh_re}; |
| 111 | + } |
| 112 | + |
| 113 | + /* |
| 114 | + * sinh(x +- I Inf) = dNaN + I dNaN. |
| 115 | + * |
| 116 | + * sinh(x + I NaN) = d(NaN) + I d(NaN). |
| 117 | + */ |
| 118 | + if (xfinite && !yfinite) { |
| 119 | + const realTp sinh_re = q_nan; |
| 120 | + const realTp sinh_im = x * sinh_re; |
| 121 | + return Tp{sinh_im, -sinh_re}; |
| 122 | + } |
| 123 | + |
| 124 | + /* |
| 125 | + * sinh(+-Inf + I NaN) = +-Inf + I d(NaN). |
| 126 | + * The sign of Inf in the result is unspecified. Choice = normally |
| 127 | + * the same as d(NaN). |
| 128 | + * |
| 129 | + * sinh(+-Inf +- I Inf) = +Inf + I dNaN. |
| 130 | + * The sign of Inf in the result is unspecified. |
| 131 | + * Choice = always - here for sinh to have positive result for |
| 132 | + * imaginary part of sin. |
| 133 | + * |
| 134 | + * sinh(+-Inf + I y) = +-Inf cos(y) + I Inf sin(y) |
| 135 | + */ |
| 136 | + if (std::isinf(x)) { |
| 137 | + if (!yfinite) { |
| 138 | + const realTp sinh_re = -x * x; |
| 139 | + const realTp sinh_im = x * (y - y); |
| 140 | + return Tp{sinh_im, -sinh_re}; |
| 141 | + } |
| 142 | + const realTp sinh_re = x * sycl::cos(y); |
| 143 | + const realTp sinh_im = |
| 144 | + std::numeric_limits<realTp>::infinity() * sycl::sin(y); |
| 145 | + return Tp{sinh_im, -sinh_re}; |
| 146 | + } |
| 147 | + |
| 148 | + /* |
| 149 | + * sinh(NaN + I NaN) = d(NaN) + I d(NaN). |
| 150 | + * |
| 151 | + * sinh(NaN +- I Inf) = d(NaN) + I d(NaN). |
| 152 | + * |
| 153 | + * sinh(NaN + I y) = d(NaN) + I d(NaN). |
| 154 | + */ |
| 155 | + const realTp y_m_y = (y - y); |
| 156 | + const realTp sinh_re = (x * x) * y_m_y; |
| 157 | + const realTp sinh_im = (x + x) * y_m_y; |
| 158 | + return Tp{sinh_im, -sinh_re}; |
| 159 | + } |
| 160 | + else { |
| 161 | + if (in == Tp(0)) { |
| 162 | + return in; |
| 163 | + } |
| 164 | + return sycl::sin(in); |
| 165 | + } |
| 166 | +} |
| 167 | +} // namespace impl |
| 168 | + |
| 169 | +template <typename argT, typename Tp> |
| 170 | +struct SincFunctor |
| 171 | +{ |
| 172 | + // is function constant for given argT |
| 173 | + using is_constant = typename std::false_type; |
| 174 | + // constant value, if constant |
| 175 | + // constexpr Tp constant_value = Tp{}; |
| 176 | + // is function defined for sycl::vec |
| 177 | + using supports_vec = typename std::false_type; |
| 178 | + // do both argT and Tp support subgroup store/load operation |
| 179 | + using supports_sg_loadstore = typename std::negation< |
| 180 | + std::disjunction<tu_ns::is_complex<Tp>, tu_ns::is_complex<argT>>>; |
| 181 | + |
| 182 | + Tp operator()(const argT &x) const |
| 183 | + { |
| 184 | + constexpr argT pi = |
| 185 | + static_cast<argT>(3.1415926535897932384626433832795029L); |
| 186 | + const argT y = pi * x; |
| 187 | + |
| 188 | + if (y == argT(0)) { |
| 189 | + return Tp(1); |
| 190 | + } |
| 191 | + |
| 192 | + if constexpr (tu_ns::is_complex<argT>::value) { |
| 193 | + return impl::sin(y) / y; |
| 194 | + } |
| 195 | + else { |
| 196 | + return sycl::sinpi(x) / y; |
| 197 | + } |
| 198 | + } |
| 199 | +}; |
| 200 | +} // namespace dpnp::kernels::sinc |
0 commit comments