@@ -196,14 +196,12 @@ for N in @tN([Float64, Float32, Rational{Int}])
196
196
# affine_map
197
197
@test_throws DimensionMismatch affine_map (ones (N, 2 , 3 ), U, N[1 , 1 ])
198
198
@test_throws DimensionMismatch affine_map (ones (N, 2 , 2 ), U, N[1 ])
199
- @static if isdefined (@__MODULE__ , :Polyhedra ) && isdefined (@__MODULE__ , :CDDLib )
200
- # TODO this should work, even without Polyhedra
201
- @test_broken affine_map (ones (N, 2 , 2 ), U, N[1 , 1 ])
202
- # U2 = affine_map(ones(N, 2, 2), U, N[1, 1])
203
- # @test isidentical(U, U2)
204
- # U2 = affine_map(ones(N, 3, 2), U, N[1, 1, 3])
205
- # @test isidentical(U3, U2)
206
- end
199
+ U2 = affine_map (ones (N, 2 , 2 ), U, N[1 , 1 ])
200
+ @test isidentical (U, U2)
201
+ X = affine_map (N[1 2 ; 0 0 ], U, N[1 , 1 ])
202
+ @test X isa HPolyhedron{N} && isequivalent (X, Hyperplane (N[0 , 1 ], N (1 )))
203
+ U2 = affine_map (ones (N, 3 , 2 ), U, N[1 , 1 , 3 ])
204
+ @test isidentical (U3, U2)
207
205
208
206
# distance (between point and set)
209
207
@test_throws DimensionMismatch distance (U, N[0 ])
@@ -233,16 +231,14 @@ for N in @tN([Float64, Float32, Rational{Int}])
233
231
234
232
# linear_map
235
233
@test_throws DimensionMismatch linear_map (ones (N, 2 , 3 ), U)
236
- @static if isdefined (@__MODULE__ , :Polyhedra ) && isdefined (@__MODULE__ , :CDDLib )
237
- # TODO this should work, even without Polyhedra
238
- @test_broken linear_map (ones (N, 2 , 2 ), U)
239
- # U2 = linear_map(ones(N, 2, 2), U)
240
- # @test_broken isidentical(U, U2)
241
- @test_broken linear_map (ones (N, 3 , 2 ), U)
242
- # U2 = linear_map(ones(N, 3, 2), U)
243
- # @test U2 isa HPolyhedron{N} # TODO this should change
244
- # @test_broken isidentical(U3, U2)
245
- end
234
+ U2 = linear_map (ones (N, 2 , 2 ), U)
235
+ @test isidentical (U, U2)
236
+ U2 = linear_map (ones (N, 3 , 2 ), U)
237
+ @test isidentical (U3, U2)
238
+ P = linear_map (N[1 0 ; 0 0 ], U)
239
+ @test P isa HPolyhedron{N} && isequivalent (P, Hyperplane (N[0 , 1 ], N (0 )))
240
+ P = linear_map (N[0 0 ; 0 0 ; 0 0 ], U)
241
+ @test P isa HPolyhedron{N} && isequivalent (P, ZeroSet {N} (3 ))
246
242
247
243
# linear_map_inverse
248
244
U2 = LazySets. linear_map_inverse (ones (N, 2 , 3 ), U)
@@ -466,5 +462,5 @@ for N in @tN([Float64, Float32])
466
462
467
463
# exponential_map
468
464
U2 = exponential_map (ones (N, 2 , 2 ), U)
469
- @test_broken isidentical (U, U2) # TODO this should change
465
+ @test isidentical (U, U2)
470
466
end
0 commit comments