@@ -197,14 +197,12 @@ for N in @tN([Float64, Float32, Rational{Int}])
197
197
# affine_map
198
198
@test_throws DimensionMismatch affine_map (ones (N, 2 , 3 ), U, N[1 , 1 ])
199
199
@test_throws DimensionMismatch affine_map (ones (N, 2 , 2 ), U, N[1 ])
200
- @static if isdefined (@__MODULE__ , :Polyhedra ) && isdefined (@__MODULE__ , :CDDLib )
201
- # TODO this should work, even without Polyhedra
202
- @test_broken affine_map (ones (N, 2 , 2 ), U, N[1 , 1 ])
203
- # U2 = affine_map(ones(N, 2, 2), U, N[1, 1])
204
- # @test isidentical(U, U2)
205
- # U2 = affine_map(ones(N, 3, 2), U, N[1, 1, 3])
206
- # @test isidentical(U3, U2)
207
- end
200
+ U2 = affine_map (ones (N, 2 , 2 ), U, N[1 , 1 ])
201
+ @test isidentical (U, U2)
202
+ X = affine_map (N[1 2 ; 0 0 ], U, N[1 , 1 ])
203
+ @test X isa HPolyhedron{N} && isequivalent (X, Hyperplane (N[0 , 1 ], N (1 )))
204
+ U2 = affine_map (ones (N, 3 , 2 ), U, N[1 , 1 , 3 ])
205
+ @test isidentical (U3, U2)
208
206
209
207
# distance (between point and set)
210
208
@test_throws DimensionMismatch distance (U, N[0 ])
@@ -235,16 +233,14 @@ for N in @tN([Float64, Float32, Rational{Int}])
235
233
236
234
# linear_map
237
235
@test_throws DimensionMismatch linear_map (ones (N, 2 , 1 ), U)
238
- @static if isdefined (@__MODULE__ , :Polyhedra ) && isdefined (@__MODULE__ , :CDDLib )
239
- # TODO this should work, even without Polyhedra
240
- @test_broken linear_map (ones (N, 2 , 2 ), U)
241
- # U2 = linear_map(ones(N, 2, 2), U)
242
- # @test_broken isidentical(U, U2)
243
- @test_broken linear_map (ones (N, 3 , 2 ), U)
244
- # U2 = linear_map(ones(N, 3, 2), U)
245
- # @test U2 isa HPolyhedron{N} # TODO this should change
246
- # @test_broken isidentical(U3, U2)
247
- end
236
+ U2 = linear_map (ones (N, 2 , 2 ), U)
237
+ @test isidentical (U, U2)
238
+ U2 = linear_map (ones (N, 3 , 2 ), U)
239
+ @test isidentical (U3, U2)
240
+ P = linear_map (N[1 0 ; 0 0 ], U)
241
+ @test P isa HPolyhedron{N} && isequivalent (P, Hyperplane (N[0 , 1 ], N (0 )))
242
+ P = linear_map (N[0 0 ; 0 0 ; 0 0 ], U)
243
+ @test P isa HPolyhedron{N} && isequivalent (P, ZeroSet {N} (3 ))
248
244
249
245
# linear_map_inverse
250
246
U2 = LazySets. linear_map_inverse (ones (N, 2 , 3 ), U)
@@ -469,5 +465,5 @@ for N in @tN([Float64, Float32])
469
465
470
466
# exponential_map
471
467
U2 = exponential_map (ones (N, 2 , 2 ), U)
472
- @test_broken isidentical (U, U2) # TODO this should change
468
+ @test isidentical (U, U2)
473
469
end
0 commit comments