You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Creates a `ColumnSet` containing columns from the top-level, specified [column group](DataColumn.md#columngroup),
323
-
or `ColumnSet` that have names that satisfy the given function. These functions accept a `String` as argument, as
323
+
Creates a [`ColumnSet`](#column-resolvers) containing columns from the top-level, specified [column group](DataColumn.md#columngroup),
324
+
or [`ColumnSet`](#column-resolvers) that have names that satisfy the given function. These functions accept a `String` as argument, as
324
325
well as an optional `ignoreCase` parameter. For the `nameContains` variant, you can also pass a `Regex` as an argument.
325
326
Note, on [column groups](DataColumn.md#columngroup), the functions have names starting with `cols` to avoid
326
327
ambiguity.
327
328
328
329
##### (Cols) Without Nulls {collapsible="true"}
329
330
`withoutNulls()`, `colsWithoutNulls()`
330
331
331
-
Creates a `ColumnSet` containing columns from the top-level, specified [column group](DataColumn.md#columngroup),
332
-
or `ColumnSet` that have no `null` values. This is a shorthand for `cols { !it.hasNulls() }`.
332
+
Creates a [`ColumnSet`](#column-resolvers) containing columns from the top-level, specified [column group](DataColumn.md#columngroup),
333
+
or [`ColumnSet`](#column-resolvers) that have no `null` values. This is a shorthand for `cols { !it.hasNulls() }`.
333
334
Note, to avoid ambiguity, `withoutNulls` is called `colsWithoutNulls` when called on a
334
335
[column group](DataColumn.md#columngroup).
335
336
336
337
##### Distinct {collapsible="true"}
337
338
`colSet.distinct()`
338
339
339
-
Returns a new `ColumnSet` from the specified `ColumnSet` containing only distinct columns (by path).
340
+
Returns a new [`ColumnSet`](#column-resolvers) from the specified [`ColumnSet`](#column-resolvers) containing only distinct columns (by path).
340
341
This is useful when you've selected the same column multiple times but only want it once.
341
342
342
343
This does not cover the case where a column is selected individually and through its enclosing
@@ -348,30 +349,30 @@ For this, you'll need to [rename](ColumnSelectors.md#rename) one of the columns.
348
349
##### None {collapsible="true"}
349
350
`none()`
350
351
351
-
Creates an empty `ColumnSet`, essentially selecting no columns at all.
352
+
Creates an empty [`ColumnSet`](#column-resolvers), essentially selecting no columns at all.
352
353
This is the opposite of [`all()`](ColumnSelectors.md#all-cols).
353
354
354
355
This function mostly exists for completeness, but can be useful in some very specific cases.
355
356
356
357
##### Cols Of {collapsible="true"}
357
358
`colsOf<T>()`, `colsOf<T> {}`
358
359
359
-
Creates a `ColumnSet` containing columns from the top-level, specified [column group](DataColumn.md#columngroup),
360
-
or `ColumnSet` that are a subtype of the specified type `T` and adhere to the optional condition.
360
+
Creates a [`ColumnSet`](#column-resolvers) containing columns from the top-level, specified [column group](DataColumn.md#columngroup),
361
+
or [`ColumnSet`](#column-resolvers) that are a subtype of the specified type `T` and adhere to the optional condition.
361
362
362
363
##### Simplify {collapsible="true"}
363
364
`colSet.simplify()`
364
365
365
-
Returns a new `ColumnSet` from the specified `ColumnSet` in 'simplified' form.
366
-
This function simplifies the structure of the `ColumnSet` by removing columns that are already present in
366
+
Returns a new [`ColumnSet`](#column-resolvers) from the specified [`ColumnSet`](#column-resolvers) in 'simplified' form.
367
+
This function simplifies the structure of the [`ColumnSet`](#column-resolvers) by removing columns that are already present in
367
368
[column groups](DataColumn.md#columngroup), returning only these groups,
368
369
plus columns not belonging in any of the groups.
369
370
370
-
In other words, this means that if a column in the `ColumnSet` is inside a [column group](DataColumn.md#columngroup)
371
-
in the `ColumnSet`, it will not be included in the result.
371
+
In other words, this means that if a column in the [`ColumnSet`](#column-resolvers) is inside a [column group](DataColumn.md#columngroup)
372
+
in the [`ColumnSet`](#column-resolvers), it will not be included in the result.
372
373
373
374
It's useful in combination with [`colsAtAnyDepth {}`](ColumnSelectors.md#cols-at-any-depth), as that function can
374
-
create a `ColumnSet` containing both a column and the [column group](DataColumn.md#columngroup) it's in.
375
+
create a [`ColumnSet`](#column-resolvers) containing both a column and the [column group](DataColumn.md#columngroup) it's in.
375
376
376
377
In the past, was named `top()` and `roots()`, but these names have been deprecated.
377
378
@@ -382,13 +383,13 @@ In the past, was named `top()` and `roots()`, but these names have been deprecat
382
383
##### Filter {collapsible="true"}
383
384
`colSet.filter {}`
384
385
385
-
Returns a new `ColumnSet` from the specified `ColumnSet` containing only columns that satisfy the given condition.
386
+
Returns a new [`ColumnSet`](#column-resolvers) from the specified [`ColumnSet`](#column-resolvers) containing only columns that satisfy the given condition.
386
387
This function behaves the same as [`cols {}` and `[{}]`](ColumnSelectors.md#cols), but only exists on column sets.
387
388
388
389
##### And {collapsible="true"}
389
390
`colSet and colB`
390
391
391
-
Creates a `ColumnSet` containing the columns from both the left and right side of the function. This allows
392
+
Creates a [`ColumnSet`](#column-resolvers) containing the columns from both the left and right side of the function. This allows
392
393
you to combine selections or simply select multiple columns at once.
393
394
394
395
Any combination of [AccessApi](apiLevels.md) can be used on either side of the `and` operator.
@@ -595,3 +596,27 @@ df.select { (colsOf<Int>() and age).distinct() }
0 commit comments