@@ -145,7 +145,7 @@ def staged_score(self, X, y, sample_weight=None):
145
145
------
146
146
z : float
147
147
"""
148
- return super ().staged_score (X , y , sample_weight )
148
+ yield from super ().staged_score (X , y , sample_weight )
149
149
150
150
def staged_predict (self , X ):
151
151
"""Return staged predictions for X.
@@ -167,7 +167,7 @@ def staged_predict(self, X):
167
167
y : generator of ndarray of shape (n_samples,)
168
168
The predicted classes.
169
169
"""
170
- return super ().staged_predict (X )
170
+ yield from super ().staged_predict (X )
171
171
172
172
def staged_decision_function (self , X ):
173
173
"""Compute decision function of ``X`` for each boosting iteration.
@@ -190,7 +190,7 @@ def staged_decision_function(self, X):
190
190
values closer to -1 or 1 mean more like the first or second
191
191
class in ``classes_``, respectively.
192
192
"""
193
- return super ().staged_decision_function (X )
193
+ yield from super ().staged_decision_function (X )
194
194
195
195
def predict_proba (self , X ):
196
196
"""Predict class probabilities for X.
@@ -235,7 +235,7 @@ def staged_predict_proba(self, X):
235
235
The class probabilities of the input samples. The order of
236
236
outputs is the same of that of the :term:`classes_` attribute.
237
237
"""
238
- return super ().staged_predict_proba (X )
238
+ yield from super ().staged_predict_proba (X )
239
239
240
240
def predict_log_proba (self , X ):
241
241
"""Predict class log-probabilities for X.
0 commit comments