|
4 | 4 |
|
5 | 5 | This time, we only provide benchmark on CPU. In the near future, we will add benchmark on ARM and GPU.
|
6 | 6 |
|
| 7 | +> System: `CentOS 7 in Docker`, for benchmark between Anakin and Tensorflow |
| 8 | +> System: `CentOS 6.3`, for benchmark between Anakin and Paddle |
| 9 | +
|
7 | 10 | ## Counterpart of anakin :
|
8 | 11 |
|
9 | 12 | The counterpart of **`Anakin`** is `Tensorflow 1.8.0`, which installed by Anaconda 4.5.4, run by Python 3.6
|
@@ -202,55 +205,77 @@ We tested them on single-CPU with different thread numbers.
|
202 | 205 | 4 | 18074 | 118696
|
203 | 206 | 6 | 26607 | 102044
|
204 | 207 |
|
205 |
| -2. **`Anakin`** VS **`PaddlePaddle/Fluid\`** |
206 |
| - |
| 208 | +2. **`Anakin`** VS **`PaddlePaddle/Fluid`** |
| 209 | +We use private dataset and different QPS index in this benchmark. |
207 | 210 | ### <span id = '1'>language model in E5-2650 v4 </span>
|
208 | 211 |
|
209 | 212 | - Latency (`ms`) of one batch
|
210 | 213 |
|
211 | 214 | ThreadNum | Fluid | Anakin
|
212 | 215 | :---: | :---: | :---: |
|
213 |
| - 1 | 42.09 | 1.90 |
214 |
| - 2 | 42.14 | 2.16 |
215 |
| - 6 | 42.15 | 4.21 |
216 |
| - 10 | 42.14 | 9.26 |
217 |
| - 12 | 42.34 | 11.17 |
| 216 | + 1 | 42.7418 | 1.93589 |
| 217 | + 2 | 42.7418 | 2.49537 |
| 218 | + 6 | 42.7734 | 3.14332 |
| 219 | + 10 | 43.0721 | 4.55329 |
| 220 | + 12 | 42.8501 | 5.09893 |
218 | 221 |
|
219 | 222 | - Throughput (`sentence/s`)
|
220 | 223 |
|
221 | 224 | ThreadNum | Fluid | Anakin
|
222 | 225 | :---: | :---: | :---: |
|
223 |
| - 1 | 23 | 524 |
224 |
| - 2 | 47 | 916 |
225 |
| - 6 | 141 | 1402 |
226 |
| - 10 | 236 | 1063 |
227 |
| - 12 | 282 | 1044 |
| 226 | + 1 | 23 | 504 |
| 227 | + 2 | 46 | 762 |
| 228 | + 6 | 134 | 1393 |
| 229 | + 10 | 218 | 1556 |
| 230 | + 12 | 260 | 1541 |
228 | 231 |
|
229 | 232 | ### <span id = '2'>Chinese_ner model in E5-2650 v4 </span>
|
230 | 233 |
|
231 | 234 | - Latency (`ms`) of one batch
|
232 | 235 |
|
233 | 236 | ThreadNum | Fluid | Anakin
|
234 | 237 | :---: | :---: | :---: |
|
235 |
| - 1 | 0.47 | 0.17 |
236 |
| - 4 | 0.26 | 0.17 |
237 |
| - 6 | 0.36 | 0.17 |
238 |
| - 10 | 0.59 | 0.17 |
239 |
| - 12 | 0.72 | 0.17 |
| 238 | + 1 | 0.380475 | 0.17034 |
| 239 | + 4 | 0.380475 | 0.171143 |
| 240 | + 6 | 0.380475 | 0.172688 |
| 241 | + 10 | 0.380475 | 0.173269 |
| 242 | + 12 | 0.380475 | 0.17668 |
| 243 | + |
| 244 | +- Throughput (`sentence/s`) |
| 245 | + |
| 246 | + ThreadNum | Fluid | Anakin |
| 247 | + :---: | :---: | :---: | |
| 248 | + 1 | 7844 | 5822 |
| 249 | + 4 | 7844 | 11377 |
| 250 | + 6 | 7844 | 29725 |
| 251 | + 10 | 7844 | 41238 |
| 252 | + 12 | 7844 | 42790 |
| 253 | + |
| 254 | +### <span id = '3'>text_classfication model in E5-2650 v4 </span> |
| 255 | + |
| 256 | +- Latency (`ms`) of one batch |
| 257 | + |
| 258 | + ThreadNum | Fluid | Anakin |
| 259 | + :---: | :---: | :---: | |
| 260 | + 1 | 1.48578 | 1.10088 |
| 261 | + 4 | 1.54025 | 1.11258 |
| 262 | + 6 | 1.68529 | 1.1257 |
| 263 | + 10 | 1.9817 | 1.13267 |
| 264 | + 12 | 2.21864 | 1.1429 |
240 | 265 |
|
241 | 266 | - Throughput (`sentence/s`)
|
242 | 267 |
|
243 | 268 | ThreadNum | Fluid | Anakin
|
244 | 269 | :---: | :---: | :---: |
|
245 |
| - 1 | 2129 | 5819 |
246 |
| - 4 | 3866 | 11182 |
247 |
| - 6 | 8095 | 30948 |
248 |
| - 10 | 8250 | 44093 |
249 |
| - 12 | 8112 | 47185 |
| 270 | + 1 | 673 | 901 |
| 271 | + 4 | 1289 | 1665 |
| 272 | + 6 | 3458 | 4449 |
| 273 | + 10 | 4875 | 6183 |
| 274 | + 12 | 5265 | 6188 |
250 | 275 |
|
251 | 276 | ## How to run those Benchmark models?
|
252 | 277 |
|
253 |
| -> 1. You can just run `sh benchmark_tensorflow.sh` and `sh benchmark_anakin.sh` |
254 |
| -> 2. Get the model of caffe or fluid, convert model to anakin model, use net_test_*** to test your model. |
| 278 | +> 1. You can just run `sh benchmark_tensorflow.sh` and `sh benchmark_anakin.sh` |
| 279 | +> 2. Get the model of caffe or fluid, convert model to anakin model, use net_test_*** to test your model. |
255 | 280 |
|
256 | 281 |
|
0 commit comments