Skip to content

Commit 06452f1

Browse files
bingyanghuangluotao1
authored andcommitted
update int8 doc (#20738)
1 parent 419188d commit 06452f1

File tree

2 files changed

+21
-21
lines changed

2 files changed

+21
-21
lines changed

paddle/fluid/inference/tests/api/int8_mkldnn_quantization.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -42,25 +42,25 @@ We provide the results of accuracy and performance measured on Intel(R) Xeon(R)
4242
4343
| Model | FP32 Accuracy | INT8 Accuracy | Accuracy Diff(FP32-INT8) |
4444
| :----------: | :-------------: | :------------: | :--------------: |
45-
| GoogleNet | 70.50% | 69.81% | 0.69% |
46-
| MobileNet-V1 | 70.78% | 70.42% | 0.36% |
47-
| MobileNet-V2 | 71.90% | 71.35% | 0.55% |
48-
| ResNet-101 | 77.50% | 77.42% | 0.08% |
49-
| ResNet-50 | 76.63% | 76.52% | 0.11% |
50-
| VGG16 | 72.08% | 72.03% | 0.05% |
51-
| VGG19 | 72.57% | 72.55% | 0.02% |
45+
| GoogleNet | 70.50% | 70.08% | 0.42% |
46+
| MobileNet-V1 | 70.78% | 70.41% | 0.37% |
47+
| MobileNet-V2 | 71.90% | 71.34% | 0.56% |
48+
| ResNet-101 | 77.50% | 77.43% | 0.07% |
49+
| ResNet-50 | 76.63% | 76.57% | 0.06% |
50+
| VGG16 | 72.08% | 72.05% | 0.03% |
51+
| VGG19 | 72.57% | 72.57% | 0.00% |
5252
5353
>**II. Throughput on Intel(R) Xeon(R) Gold 6271 (batch size 1 on single core)**
5454
5555
| Model | FP32 Throughput(images/s) | INT8 Throughput(images/s) | Ratio(INT8/FP32)|
5656
| :-----------:| :------------: | :------------: | :------------: |
57-
| GoogleNet | 34.06 | 72.79 | 2.14 |
58-
| MobileNet-V1 | 80.02 | 230.65 | 2.88 |
59-
| MobileNet-V2 | 99.38 | 206.92 | 2.08 |
60-
| ResNet-101 | 7.38 | 27.31 | 3.70 |
61-
| ResNet-50 | 13.71 | 50.55 | 3.69 |
62-
| VGG16 | 3.64 | 10.56 | 2.90 |
63-
| VGG19 | 2.95 | 9.02 | 3.05 |
57+
| GoogleNet | 32.76 | 67.43 | 2.06 |
58+
| MobileNet-V1 | 73.96 | 218.82 | 2.96 |
59+
| MobileNet-V2 | 87.94 | 193.70 | 2.20 |
60+
| ResNet-101 | 7.17 | 26.37 | 3.42 |
61+
| ResNet-50 | 13.26 | 48.72 | 3.67 |
62+
| VGG16 | 3.47 | 10.10 | 2.91 |
63+
| VGG19 | 2.82 | 8.68 | 3.07 |
6464
6565
6666
* ## Prepare dataset

python/paddle/fluid/contrib/slim/tests/QAT_mkldnn_int8_readme.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -65,12 +65,12 @@ Notes:
6565
6666
| Model | Fake QAT Original Throughput(images/s) | INT8 Throughput(images/s) | Ratio(INT8/FP32)|
6767
| :-----------:| :-------------------------: | :------------: | :------------: |
68-
| MobileNet-V1 | 13.66 | 114.98 | 8.42 |
69-
| MobileNet-V2 | 10.22 | 79.78 | 7.81 |
70-
| ResNet101 | 2.65 | 18.97 | 7.16 |
71-
| ResNet50 | 4.58 | 35.09 | 7.66 |
72-
| VGG16 | 2.38 | 9.93 | 4.17 |
73-
| VGG19 | 2.03 | 8.53 | 4.20 |
68+
| MobileNet-V1 | 12.86 | 118.05 | 9.18 |
69+
| MobileNet-V2 | 9.76 | 85.89 | 8.80 |
70+
| ResNet101 | 2.55 | 19.40 | 7.61 |
71+
| ResNet50 | 4.39 | 35.78 | 8.15 |
72+
| VGG16 | 2.26 | 9.89 | 4.38 |
73+
| VGG19 | 1.96 | 8.41 | 4.29 |
7474

7575
## 3. How to reproduce the results
7676
Three steps to reproduce the above-mentioned accuracy results, and we take ResNet50 benchmark as an example:
@@ -95,7 +95,7 @@ cd /PATH/TO/DOWNLOAD/MODEL/
9595
wget http://paddle-inference-dist.bj.bcebos.com/int8/${MODEL_FILE_NAME}
9696
```
9797

98-
To download and verify all the 7 models, you need to set `MODEL_NAME` to one of the following values in command line:
98+
Unzip the downloaded model to the folder.To verify all the 7 models, you need to set `MODEL_NAME` to one of the following values in command line:
9999
```text
100100
QAT MKL-DNN 1.0
101101
MODEL_NAME=ResNet50, ResNet101, GoogleNet, MobileNetV1, MobileNetV2, VGG16, VGG19

0 commit comments

Comments
 (0)