Skip to content

Commit 217c6a3

Browse files
authored
Merge pull request #5949 from ranqiu92/doc
Refine the doc of layers.py
2 parents 0ce9bf7 + d4c2f2f commit 217c6a3

File tree

1 file changed

+24
-24
lines changed
  • python/paddle/trainer_config_helpers

1 file changed

+24
-24
lines changed

python/paddle/trainer_config_helpers/layers.py

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -2988,8 +2988,8 @@ def spp_layer(input,
29882988
A layer performs spatial pyramid pooling.
29892989
29902990
Reference:
2991-
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
2992-
https://arxiv.org/abs/1406.4729
2991+
`Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
2992+
https://arxiv.org/abs/1406.4729`_
29932993
29942994
The example usage is:
29952995
@@ -3090,8 +3090,8 @@ def img_cmrnorm_layer(input,
30903090
Response normalization across feature maps.
30913091
30923092
Reference:
3093-
ImageNet Classification with Deep Convolutional Neural Networks
3094-
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
3093+
`ImageNet Classification with Deep Convolutional Neural Networks
3094+
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf`_
30953095
30963096
The example usage is:
30973097
@@ -3157,9 +3157,9 @@ def batch_norm_layer(input,
31573157
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
31583158
31593159
Reference:
3160-
Batch Normalization: Accelerating Deep Network Training by Reducing
3160+
`Batch Normalization: Accelerating Deep Network Training by Reducing
31613161
Internal Covariate Shift
3162-
http://arxiv.org/abs/1502.03167
3162+
http://arxiv.org/abs/1502.03167`_
31633163
31643164
The example usage is:
31653165
@@ -5416,10 +5416,10 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
54165416
to be devided by groups.
54175417
54185418
Reference:
5419-
Maxout Networks
5420-
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
5421-
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
5422-
https://arxiv.org/pdf/1312.6082v4.pdf
5419+
`Maxout Networks
5420+
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf`_
5421+
`Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
5422+
https://arxiv.org/pdf/1312.6082v4.pdf`_
54235423
54245424
.. math::
54255425
y_{si+j} = \max_k x_{gsi + sk + j}
@@ -5484,9 +5484,9 @@ def ctc_layer(input,
54845484
alignment between the inputs and the target labels is unknown.
54855485
54865486
Reference:
5487-
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
5487+
`Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
54885488
with Recurrent Neural Networks
5489-
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5489+
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
54905490
54915491
Note:
54925492
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
@@ -5558,9 +5558,9 @@ def warp_ctc_layer(input,
55585558
install it to :code:`third_party/install/warpctc` directory.
55595559
55605560
Reference:
5561-
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
5561+
`Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
55625562
with Recurrent Neural Networks
5563-
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5563+
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
55645564
55655565
Note:
55665566
- Let num_classes represents the category number. Considering the 'blank'
@@ -5780,8 +5780,8 @@ def nce_layer(input,
57805780
Noise-contrastive estimation.
57815781
57825782
Reference:
5783-
A fast and simple algorithm for training neural probabilistic language
5784-
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5783+
`A fast and simple algorithm for training neural probabilistic language
5784+
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf`_
57855785
57865786
The example usage is:
57875787
@@ -5896,8 +5896,8 @@ def rank_cost(left,
58965896
A cost Layer for learning to rank using gradient descent.
58975897
58985898
Reference:
5899-
Learning to Rank using Gradient Descent
5900-
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
5899+
`Learning to Rank using Gradient Descent
5900+
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf`_
59015901
59025902
.. math::
59035903
@@ -6432,8 +6432,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
64326432
smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if} \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
64336433
64346434
Reference:
6435-
Fast R-CNN
6436-
https://arxiv.org/pdf/1504.08083v2.pdf
6435+
`Fast R-CNN
6436+
https://arxiv.org/pdf/1504.08083v2.pdf`_
64376437
64386438
The example usage is:
64396439
@@ -6639,8 +6639,8 @@ def prelu_layer(input,
66396639
The Parametric Relu activation that actives outputs with a learnable weight.
66406640
66416641
Reference:
6642-
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
6643-
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
6642+
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
6643+
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf`_
66446644
66456645
.. math::
66466646
z_i &\\quad if \\quad z_i > 0 \\\\
@@ -6736,8 +6736,8 @@ def gated_unit_layer(input,
67366736
product between :match:`X'` and :math:`\sigma` is finally returned.
67376737
67386738
Reference:
6739-
Language Modeling with Gated Convolutional Networks
6740-
https://arxiv.org/abs/1612.08083
6739+
`Language Modeling with Gated Convolutional Networks
6740+
https://arxiv.org/abs/1612.08083`_
67416741
67426742
.. math::
67436743
y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

0 commit comments

Comments
 (0)