Skip to content

Commit 41ca7ff

Browse files
authored
Update pooling.py
1 parent 5a9952c commit 41ca7ff

File tree

1 file changed

+19
-30
lines changed

1 file changed

+19
-30
lines changed

python/paddle/nn/functional/pooling.py

Lines changed: 19 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -196,12 +196,12 @@ def avg_pool1d(x,
196196
.. code-block:: python
197197
198198
import paddle
199-
import paddle.nn.functional as F
200-
import numpy as np
199+
import paddle.nn as nn
201200
202-
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
203-
out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
204-
# out shape: [1, 3, 16]
201+
data = paddle.uniform([1, 3, 32], paddle.float32)
202+
AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
203+
pool_out = AvgPool1D(data)
204+
# pool_out shape: [1, 3, 16]
205205
"""
206206
"""NCL to NCHW"""
207207
data_format = "NCHW"
@@ -316,10 +316,9 @@ def avg_pool2d(x,
316316
317317
import paddle
318318
import paddle.nn.functional as F
319-
import numpy as np
320319
321320
# avg pool2d
322-
x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
321+
x = paddle.uniform([1, 3, 32, 32], paddle.float32)
323322
out = F.avg_pool2d(x,
324323
kernel_size=2,
325324
stride=2, padding=0)
@@ -439,9 +438,8 @@ def avg_pool3d(x,
439438
.. code-block:: python
440439
441440
import paddle
442-
import numpy as np
443441
444-
x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
442+
x = paddle.uniform([1, 3, 32, 32, 32], paddle.float32)
445443
# avg pool3d
446444
out = paddle.nn.functional.avg_pool3d(
447445
x,
@@ -564,9 +562,8 @@ def max_pool1d(x,
564562
565563
import paddle
566564
import paddle.nn.functional as F
567-
import numpy as np
568565
569-
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
566+
data = paddle.uniform([1, 3, 32], paddle.float32)
570567
pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
571568
# pool_out shape: [1, 3, 16]
572569
pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
@@ -1275,8 +1272,10 @@ def adaptive_avg_pool1d(x, output_size, name=None):
12751272
x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
12761273
output_size (int): The target output size. Its data type must be int.
12771274
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1275+
12781276
Returns:
12791277
Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
1278+
12801279
Examples:
12811280
.. code-block:: python
12821281
@@ -1359,8 +1358,7 @@ def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
13591358
None by default.
13601359
Returns:
13611360
Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
1362-
Raises:
1363-
ValueError: If `data_format` is not "NCHW" or "NHWC".
1361+
13641362
Examples:
13651363
.. code-block:: python
13661364
@@ -1499,12 +1497,10 @@ def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
14991497
# output[:, :, i, j, k] =
15001498
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
15011499
import paddle
1502-
import numpy as np
1503-
input_data = np.random.rand(2, 3, 8, 32, 32)
1504-
x = paddle.to_tensor(input_data)
1505-
# x.shape is [2, 3, 8, 32, 32]
1500+
1501+
input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
15061502
out = paddle.nn.functional.adaptive_avg_pool3d(
1507-
x = x,
1503+
x = input_data,
15081504
output_size=[3, 3, 3])
15091505
# out.shape is [2, 3, 3, 3, 3]
15101506
"""
@@ -1597,9 +1593,8 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
15971593
#
15981594
import paddle
15991595
import paddle.nn.functional as F
1600-
import numpy as np
16011596
1602-
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
1597+
data = paddle.uniform([1, 3, 32], paddle.float32)
16031598
pool_out = F.adaptive_max_pool1d(data, output_size=16)
16041599
# pool_out shape: [1, 3, 16])
16051600
pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
@@ -1678,13 +1673,10 @@ def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
16781673
# output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
16791674
#
16801675
import paddle
1681-
import numpy as np
16821676
1683-
input_data = np.random.rand(2, 3, 32, 32)
1684-
x = paddle.to_tensor(input_data)
1685-
# x.shape is [2, 3, 32, 32]
1677+
input_data = paddle.randn(shape=(2, 3, 32, 32))
16861678
out = paddle.nn.functional.adaptive_max_pool2d(
1687-
x = x,
1679+
x = input_data,
16881680
output_size=[3, 3])
16891681
# out.shape is [2, 3, 3, 3]
16901682
"""
@@ -1768,13 +1760,10 @@ def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
17681760
# output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
17691761
#
17701762
import paddle
1771-
import numpy as np
17721763
1773-
input_data = np.random.rand(2, 3, 8, 32, 32)
1774-
x = paddle.to_tensor(input_data)
1775-
# x.shape is [2, 3, 8, 32, 32]
1764+
input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
17761765
out = paddle.nn.functional.adaptive_max_pool3d(
1777-
x = x,
1766+
x = input_data,
17781767
output_size=[3, 3, 3])
17791768
# out.shape is [2, 3, 3, 3, 3]
17801769
"""

0 commit comments

Comments
 (0)