Skip to content

Commit 6d4cb7e

Browse files
authored
[fluid_ops] clean listen_and_serv (#71884)
1 parent dfdd08f commit 6d4cb7e

File tree

2 files changed

+0
-205
lines changed

2 files changed

+0
-205
lines changed

paddle/fluid/operators/pscore/listen_and_serv_op.cc

Lines changed: 0 additions & 117 deletions
This file was deleted.

test/deprecated/legacy_test/test_dist_fleet_a_sync_optimizer_geo_deprecated.py

Lines changed: 0 additions & 88 deletions
Original file line numberDiff line numberDiff line change
@@ -11,91 +11,3 @@
1111
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
1212
# See the License for the specific language governing permissions and
1313
# limitations under the License.
14-
import os
15-
import unittest
16-
17-
import paddle
18-
from paddle.distributed.fleet.base import role_maker
19-
20-
paddle.enable_static()
21-
22-
23-
class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
24-
def setUp(self):
25-
os.environ["PADDLE_PSERVER_NUMS"] = "2"
26-
os.environ["PADDLE_TRAINERS_NUM"] = "2"
27-
os.environ["POD_IP"] = "127.0.0.1"
28-
os.environ["PADDLE_PORT"] = "36001"
29-
os.environ["PADDLE_TRAINER_ID"] = "0"
30-
os.environ["PADDLE_TRAINERS_NUM"] = "2"
31-
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = (
32-
"127.0.0.1:36001,127.0.0.2:36001"
33-
)
34-
35-
def test_a_sync_optimizer_trainer(self):
36-
os.environ["TRAINING_ROLE"] = "TRAINER"
37-
from paddle.distributed import fleet
38-
39-
main_program = paddle.base.Program()
40-
startup_program = paddle.base.Program()
41-
42-
paddle.base.framework.switch_main_program(main_program)
43-
paddle.base.framework.switch_startup_program(startup_program)
44-
45-
fleet.init(role_maker.PaddleCloudRoleMaker())
46-
input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32')
47-
input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64')
48-
49-
fc_1 = paddle.static.nn.fc(x=input_x, size=64, activation='tanh')
50-
fc_2 = paddle.static.nn.fc(x=fc_1, size=64, activation='tanh')
51-
prediction = paddle.static.nn.fc(x=[fc_2], size=2, activation='softmax')
52-
cost = paddle.nn.functional.cross_entropy(
53-
input=prediction, label=input_y, reduction='none', use_softmax=False
54-
)
55-
avg_cost = paddle.mean(x=cost)
56-
57-
strategy = paddle.distributed.fleet.DistributedStrategy()
58-
strategy.a_sync = True
59-
strategy.a_sync_configs = {"k_steps": 100, "launch_barrier": False}
60-
61-
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
62-
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
63-
64-
optimizer.minimize(avg_cost)
65-
66-
def test_a_sync_optimizer_pserver(self):
67-
os.environ["TRAINING_ROLE"] = "PSERVER"
68-
from paddle.distributed import fleet
69-
70-
main_program = paddle.base.Program()
71-
startup_program = paddle.base.Program()
72-
73-
paddle.base.framework.switch_main_program(main_program)
74-
paddle.base.framework.switch_startup_program(startup_program)
75-
76-
fleet.init(role_maker.PaddleCloudRoleMaker())
77-
input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32')
78-
input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64')
79-
80-
fc_1 = paddle.static.nn.fc(x=input_x, size=64, activation='tanh')
81-
fc_2 = paddle.static.nn.fc(x=fc_1, size=64, activation='tanh')
82-
prediction = paddle.static.nn.fc(x=[fc_2], size=2, activation='softmax')
83-
cost = paddle.nn.functional.cross_entropy(
84-
input=prediction, label=input_y, reduction='none', use_softmax=False
85-
)
86-
avg_cost = paddle.mean(x=cost)
87-
88-
strategy = paddle.distributed.fleet.DistributedStrategy()
89-
strategy.a_sync = True
90-
strategy.a_sync_configs = {"k_steps": 100, "launch_barrier": False}
91-
92-
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
93-
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
94-
optimizer.minimize(avg_cost)
95-
96-
prog = paddle.base.default_main_program()
97-
self.assertEqual(prog.global_block().ops[0].type, "listen_and_serv")
98-
99-
100-
if __name__ == "__main__":
101-
unittest.main()

0 commit comments

Comments
 (0)