@@ -1386,7 +1386,7 @@ def min(input, dim=None, keep_dim=False, out=None, name=None):
1386
1386
return out
1387
1387
1388
1388
1389
- def log1p (x , out = None , name = None ):
1389
+ def log1p (x , name = None ):
1390
1390
"""
1391
1391
:alias_main: paddle.log1p
1392
1392
:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p
@@ -1396,9 +1396,6 @@ def log1p(x, out=None, name=None):
1396
1396
Out = \\ ln(x+1)
1397
1397
Args:
1398
1398
x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
1399
- out(Variable, optional): Optional output which can be any created
1400
- Variable that meets the requirements to store the result of operation.
1401
- if out is None, a new Varibale will be create to store the result.
1402
1399
name(str, optional): The default value is None. Normally there is no need for
1403
1400
user to set this property. For more information, please refer to :ref:`api_guide_Name`
1404
1401
Returns:
@@ -1427,11 +1424,11 @@ def log1p(x, out=None, name=None):
1427
1424
inputs = {'X' : [x ]}
1428
1425
helper = LayerHelper ('log1p' , ** locals ())
1429
1426
dtype = helper .input_dtype (input_param_name = 'x' )
1430
- if out is None :
1431
- out = helper .create_variable_for_type_inference (dtype )
1427
+ out = helper .create_variable_for_type_inference (dtype )
1432
1428
helper .append_op (type = "log1p" , inputs = {"X" : x }, outputs = {"Out" : out })
1433
1429
return out
1434
1430
1431
+
1435
1432
def addcmul (input , tensor1 , tensor2 , value = 1.0 , out = None , name = None ):
1436
1433
"""
1437
1434
:alias_main: paddle.addcmul
0 commit comments