|
14 | 14 |
|
15 | 15 | import unittest
|
16 | 16 |
|
17 |
| -import numpy as np |
18 |
| - |
19 |
| -import paddle |
20 |
| -from paddle import base |
21 |
| -from paddle.base import core |
22 |
| -from paddle.base.lod_tensor import ( |
23 |
| - create_lod_tensor, |
24 |
| - create_random_int_lodtensor, |
25 |
| -) |
26 |
| - |
27 |
| - |
28 |
| -class TestLoDTensor(unittest.TestCase): |
29 |
| - def test_pybind_recursive_seq_lens(self): |
30 |
| - tensor = base.DenseTensor() |
31 |
| - recursive_seq_lens = [] |
32 |
| - tensor.set_recursive_sequence_lengths(recursive_seq_lens) |
33 |
| - recursive_seq_lens = [[], [1], [3]] |
34 |
| - self.assertRaises( |
35 |
| - Exception, tensor.set_recursive_sequence_lengths, recursive_seq_lens |
36 |
| - ) |
37 |
| - recursive_seq_lens = [[0], [2], [3]] |
38 |
| - self.assertRaises( |
39 |
| - Exception, tensor.set_recursive_sequence_lengths, recursive_seq_lens |
40 |
| - ) |
41 |
| - |
42 |
| - recursive_seq_lens = [[1, 2, 3]] |
43 |
| - tensor.set_recursive_sequence_lengths(recursive_seq_lens) |
44 |
| - self.assertEqual( |
45 |
| - tensor.recursive_sequence_lengths(), recursive_seq_lens |
46 |
| - ) |
47 |
| - tensor.set(np.random.random([6, 1]), base.CPUPlace()) |
48 |
| - self.assertTrue(tensor.has_valid_recursive_sequence_lengths()) |
49 |
| - tensor.set(np.random.random([9, 1]), base.CPUPlace()) |
50 |
| - self.assertFalse(tensor.has_valid_recursive_sequence_lengths()) |
51 |
| - |
52 |
| - # Each level's sum should be equal to the number of items in the next level |
53 |
| - # Moreover, last level's sum should be equal to the tensor height |
54 |
| - recursive_seq_lens = [[2, 3], [1, 3, 1, 2, 2]] |
55 |
| - tensor.set_recursive_sequence_lengths(recursive_seq_lens) |
56 |
| - self.assertEqual( |
57 |
| - tensor.recursive_sequence_lengths(), recursive_seq_lens |
58 |
| - ) |
59 |
| - tensor.set(np.random.random([8, 1]), base.CPUPlace()) |
60 |
| - self.assertFalse(tensor.has_valid_recursive_sequence_lengths()) |
61 |
| - recursive_seq_lens = [[2, 3], [1, 3, 1, 2, 1]] |
62 |
| - tensor.set_recursive_sequence_lengths(recursive_seq_lens) |
63 |
| - self.assertTrue(tensor.has_valid_recursive_sequence_lengths()) |
64 |
| - tensor.set(np.random.random([9, 1]), base.CPUPlace()) |
65 |
| - self.assertFalse(tensor.has_valid_recursive_sequence_lengths()) |
66 |
| - |
67 |
| - def test_create_lod_tensor(self): |
68 |
| - # Create DenseTensor from a list |
69 |
| - data = [ |
70 |
| - [np.int64(1), np.int64(2), np.int64(3)], |
71 |
| - [np.int64(3), np.int64(4)], |
72 |
| - ] |
73 |
| - wrong_recursive_seq_lens = [[2, 2]] |
74 |
| - correct_recursive_seq_lens = [[3, 2]] |
75 |
| - self.assertRaises( |
76 |
| - AssertionError, |
77 |
| - create_lod_tensor, |
78 |
| - data, |
79 |
| - wrong_recursive_seq_lens, |
80 |
| - base.CPUPlace(), |
81 |
| - ) |
82 |
| - tensor = create_lod_tensor( |
83 |
| - data, correct_recursive_seq_lens, base.CPUPlace() |
84 |
| - ) |
85 |
| - self.assertEqual( |
86 |
| - tensor.recursive_sequence_lengths(), correct_recursive_seq_lens |
87 |
| - ) |
88 |
| - self.assertEqual( |
89 |
| - tensor._dtype(), paddle.base.core.VarDesc.VarType.INT64 |
90 |
| - ) |
91 |
| - self.assertEqual(tensor.shape(), [5, 1]) |
92 |
| - np.testing.assert_array_equal( |
93 |
| - np.array(tensor), |
94 |
| - np.array([1, 2, 3, 3, 4]).reshape(tensor.shape()).astype('int64'), |
95 |
| - ) |
96 |
| - |
97 |
| - # Create DenseTensor from numpy array |
98 |
| - data = np.random.random([10, 1]).astype('float64') |
99 |
| - recursive_seq_lens = [[2, 1], [3, 3, 4]] |
100 |
| - tensor = create_lod_tensor(data, recursive_seq_lens, base.CPUPlace()) |
101 |
| - self.assertEqual( |
102 |
| - tensor.recursive_sequence_lengths(), recursive_seq_lens |
103 |
| - ) |
104 |
| - self.assertEqual(tensor._dtype(), paddle.base.core.VarDesc.VarType.FP64) |
105 |
| - self.assertEqual(tensor.shape(), [10, 1]) |
106 |
| - np.testing.assert_array_equal(np.array(tensor), data) |
107 |
| - |
108 |
| - # Create DenseTensor from another DenseTensor, they are differnt instances |
109 |
| - new_recursive_seq_lens = [[2, 2, 1], [1, 2, 2, 3, 2]] |
110 |
| - new_tensor = create_lod_tensor( |
111 |
| - tensor, new_recursive_seq_lens, base.CPUPlace() |
112 |
| - ) |
113 |
| - self.assertEqual( |
114 |
| - tensor.recursive_sequence_lengths(), recursive_seq_lens |
115 |
| - ) |
116 |
| - self.assertEqual( |
117 |
| - new_tensor.recursive_sequence_lengths(), new_recursive_seq_lens |
118 |
| - ) |
119 |
| - |
120 |
| - def test_create_random_int_lodtensor(self): |
121 |
| - # The shape of a word, commonly used in speech and NLP problem, is [1] |
122 |
| - shape = [1] |
123 |
| - recursive_seq_lens = [[2, 3, 5]] |
124 |
| - dict_size = 10000 |
125 |
| - low = 0 |
126 |
| - high = dict_size - 1 |
127 |
| - tensor = create_random_int_lodtensor( |
128 |
| - recursive_seq_lens, shape, base.CPUPlace(), low, high |
129 |
| - ) |
130 |
| - self.assertEqual( |
131 |
| - tensor.recursive_sequence_lengths(), recursive_seq_lens |
132 |
| - ) |
133 |
| - self.assertEqual(tensor.shape(), [10, 1]) |
134 |
| - |
135 |
| - def test_print_lodtensor(self): |
136 |
| - shape = [1] |
137 |
| - recursive_seq_lens = [[2, 3, 5]] |
138 |
| - dict_size = 100 |
139 |
| - low = 0 |
140 |
| - high = dict_size - 1 |
141 |
| - tensor = create_random_int_lodtensor( |
142 |
| - recursive_seq_lens, shape, base.CPUPlace(), low, high |
143 |
| - ) |
144 |
| - print(tensor) |
145 |
| - self.assertTrue(isinstance(str(tensor), str)) |
146 |
| - |
147 |
| - if core.is_compiled_with_cuda(): |
148 |
| - gtensor = create_random_int_lodtensor( |
149 |
| - recursive_seq_lens, shape, base.CUDAPlace(0), low, high |
150 |
| - ) |
151 |
| - print(gtensor) |
152 |
| - self.assertTrue(isinstance(str(gtensor), str)) |
153 |
| - |
154 |
| - def test_dlpack_support(self): |
155 |
| - tensor = base.create_lod_tensor( |
156 |
| - np.array([[1], [2], [3], [4]]).astype('int'), |
157 |
| - [[1, 3]], |
158 |
| - base.CPUPlace(), |
159 |
| - ) |
160 |
| - dltensor = tensor._to_dlpack() |
161 |
| - tensor_from_dlpack = base.core.from_dlpack(dltensor) |
162 |
| - self.assertTrue(isinstance(tensor_from_dlpack, base.core.DenseTensor)) |
163 |
| - np.testing.assert_array_equal( |
164 |
| - np.array(tensor_from_dlpack), |
165 |
| - np.array([[1], [2], [3], [4]]).astype('int'), |
166 |
| - ) |
167 |
| - # when build with cuda |
168 |
| - if core.is_compiled_with_cuda(): |
169 |
| - gtensor = base.create_lod_tensor( |
170 |
| - np.array([[1], [2], [3], [4]]).astype('int'), |
171 |
| - [[1, 3]], |
172 |
| - base.CUDAPlace(0), |
173 |
| - ) |
174 |
| - gdltensor = gtensor._to_dlpack() |
175 |
| - gtensor_from_dlpack = base.core.from_dlpack(gdltensor) |
176 |
| - self.assertTrue( |
177 |
| - isinstance(gtensor_from_dlpack, base.core.DenseTensor) |
178 |
| - ) |
179 |
| - np.testing.assert_array_equal( |
180 |
| - np.array(gtensor_from_dlpack), |
181 |
| - np.array([[1], [2], [3], [4]]).astype('int'), |
182 |
| - ) |
183 |
| - |
184 |
| - def test_as_type(self): |
185 |
| - tensor = base.create_lod_tensor( |
186 |
| - np.array([[1], [2], [3], [4]]).astype('int'), |
187 |
| - [[1, 3]], |
188 |
| - base.CPUPlace(), |
189 |
| - ) |
190 |
| - fp32_tensor = tensor._as_type(paddle.base.core.VarDesc.VarType.FP32) |
191 |
| - print(fp32_tensor) |
192 |
| - |
193 |
| - |
194 | 17 | if __name__ == '__main__':
|
195 | 18 | unittest.main()
|
0 commit comments