|
| 1 | +# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import paddle |
| 16 | +from paddle.distributed.auto_parallel.pipelining.microbatch import ( |
| 17 | + TensorChunkSpec, |
| 18 | + merge_chunks, |
| 19 | + split_args_kwargs_into_chunks, |
| 20 | +) |
| 21 | + |
| 22 | + |
| 23 | +class TestMicrobatch: |
| 24 | + def __init__(self): |
| 25 | + paddle.seed(2024) |
| 26 | + paddle.distributed.init_parallel_env() |
| 27 | + self.batch_size = 8 |
| 28 | + self.feature_size = 4 |
| 29 | + self.tensor = paddle.randn([self.batch_size, self.feature_size]) |
| 30 | + self.rank = paddle.distributed.get_rank() |
| 31 | + |
| 32 | + def test_tensor_chunk_spec(self): |
| 33 | + # Test creation and string representation of TensorChunkSpec |
| 34 | + spec = TensorChunkSpec(0) |
| 35 | + assert spec.split_axis == 0 |
| 36 | + assert str(spec) == "TensorChunkSpec(0)" |
| 37 | + assert "TensorChunkSpec(0)" in repr(spec) |
| 38 | + |
| 39 | + def test_split_args_kwargs(self): |
| 40 | + # Test basic parameter splitting |
| 41 | + args = (self.tensor,) |
| 42 | + kwargs = {"input": self.tensor} |
| 43 | + num_chunks = 2 |
| 44 | + |
| 45 | + args_split, kwargs_split = split_args_kwargs_into_chunks( |
| 46 | + args, kwargs, num_chunks |
| 47 | + ) |
| 48 | + |
| 49 | + assert len(args_split) == num_chunks |
| 50 | + assert len(kwargs_split) == num_chunks |
| 51 | + assert args_split[0][0].shape[0] == self.batch_size // num_chunks |
| 52 | + |
| 53 | + # Test splitting with non-tensor parameters |
| 54 | + args = (self.tensor, 42, "string") |
| 55 | + kwargs = {"tensor": self.tensor, "number": 42} |
| 56 | + num_chunks = 2 |
| 57 | + |
| 58 | + args_split, kwargs_split = split_args_kwargs_into_chunks( |
| 59 | + args, kwargs, num_chunks |
| 60 | + ) |
| 61 | + |
| 62 | + # Verify non-tensor parameters remain unchanged in each chunk |
| 63 | + assert args_split[0][1] == 42 |
| 64 | + assert args_split[0][2] == "string" |
| 65 | + assert kwargs_split[0]["number"] == 42 |
| 66 | + |
| 67 | + # Test splitting with custom specification |
| 68 | + tensor_2d = paddle.randn([4, 6]) |
| 69 | + args = (tensor_2d,) |
| 70 | + args_chunk_spec = (TensorChunkSpec(1),) # Split on second dimension |
| 71 | + |
| 72 | + args_split, _ = split_args_kwargs_into_chunks( |
| 73 | + args, None, 2, args_chunk_spec |
| 74 | + ) |
| 75 | + |
| 76 | + assert args_split[0][0].shape[1] == 3 |
| 77 | + |
| 78 | + def test_merge_chunks(self): |
| 79 | + # Test merging chunks |
| 80 | + chunk1 = paddle.randn([4, 4]) |
| 81 | + chunk2 = paddle.randn([4, 4]) |
| 82 | + chunks = [chunk1, chunk2] |
| 83 | + chunk_spec = [TensorChunkSpec(0)] |
| 84 | + |
| 85 | + merged = merge_chunks(chunks, chunk_spec) |
| 86 | + assert merged.shape[0] == 8 |
| 87 | + |
| 88 | + # Test merging chunks containing non-tensor values |
| 89 | + chunks = [(paddle.randn([4, 4]), 42)] * 2 |
| 90 | + chunk_spec = [TensorChunkSpec(0), None] |
| 91 | + |
| 92 | + merged = merge_chunks(chunks, chunk_spec) |
| 93 | + assert merged[1] == 42 |
| 94 | + |
| 95 | + # Test error cases |
| 96 | + try: |
| 97 | + # Test error when tensor size is smaller than number of chunks |
| 98 | + small_tensor = paddle.randn([1, 4]) |
| 99 | + split_args_kwargs_into_chunks((small_tensor,), None, 2) |
| 100 | + raise AssertionError("Expected ValueError") |
| 101 | + except ValueError: |
| 102 | + pass |
| 103 | + |
| 104 | + try: |
| 105 | + # Test error when parameter count doesn't match chunk_spec length |
| 106 | + split_args_kwargs_into_chunks( |
| 107 | + (self.tensor,), |
| 108 | + None, |
| 109 | + 2, |
| 110 | + (TensorChunkSpec(0), TensorChunkSpec(1)), |
| 111 | + ) |
| 112 | + raise AssertionError("Expected ValueError") |
| 113 | + except AssertionError: |
| 114 | + pass |
| 115 | + |
| 116 | + # test merge empty chunks |
| 117 | + empty_chunks = [] |
| 118 | + result = merge_chunks(empty_chunks, None) |
| 119 | + assert result == [] |
| 120 | + |
| 121 | + # test tensor size smaller than chunks number |
| 122 | + small_tensor = paddle.randn([1, 4]) |
| 123 | + try: |
| 124 | + split_args_kwargs_into_chunks((small_tensor,), None, 2) |
| 125 | + raise AssertionError("Expected ValueError") |
| 126 | + except ValueError: |
| 127 | + pass |
| 128 | + |
| 129 | + # test merge non-tensor with tensor spec |
| 130 | + chunks = [(42,), (42,)] |
| 131 | + chunk_spec = (TensorChunkSpec(0),) |
| 132 | + result = merge_chunks(chunks, chunk_spec) |
| 133 | + assert result[0] == 42 |
| 134 | + |
| 135 | + def test_nested_structure(self): |
| 136 | + # test nested tensor |
| 137 | + nested_tensor = [ |
| 138 | + [paddle.randn([4, 2]), paddle.randn([4, 2])], |
| 139 | + [paddle.randn([4, 2]), paddle.randn([4, 2])], |
| 140 | + ] |
| 141 | + |
| 142 | + args = (nested_tensor,) |
| 143 | + kwargs = {"nested": nested_tensor} |
| 144 | + |
| 145 | + args_split, kwargs_split = split_args_kwargs_into_chunks( |
| 146 | + args, kwargs, 2 |
| 147 | + ) |
| 148 | + |
| 149 | + assert len(args_split) == 2 |
| 150 | + assert len(args_split[0][0]) == 2 |
| 151 | + assert len(args_split[0][0][0]) == 2 |
| 152 | + assert args_split[0][0][0][0].shape == [2, 2] |
| 153 | + |
| 154 | + assert len(kwargs_split) == 2 |
| 155 | + assert len(kwargs_split[0]["nested"]) == 2 |
| 156 | + assert len(kwargs_split[0]["nested"][0]) == 2 |
| 157 | + assert kwargs_split[0]["nested"][0][0].shape == [2, 2] |
| 158 | + |
| 159 | + merged_args = merge_chunks( |
| 160 | + args_split, |
| 161 | + [ |
| 162 | + [TensorChunkSpec(0), TensorChunkSpec(0)], |
| 163 | + [TensorChunkSpec(0), TensorChunkSpec(0)], |
| 164 | + ], |
| 165 | + ) |
| 166 | + |
| 167 | + assert merged_args[0][0][0].shape == [4, 2] |
| 168 | + assert merged_args[0][1][1].shape == [4, 2] |
| 169 | + |
| 170 | + assert len(merged_args[0]) == 2 |
| 171 | + assert len(merged_args[0][0]) == 2 |
| 172 | + |
| 173 | + def test_dist_tensor_split_and_merge(self): |
| 174 | + # test dist tensor split and merge |
| 175 | + base_tensor = self.tensor |
| 176 | + dense_tensor, _ = split_args_kwargs_into_chunks( |
| 177 | + (base_tensor,), |
| 178 | + None, |
| 179 | + 2, |
| 180 | + ) |
| 181 | + mesh = paddle.distributed.ProcessMesh([0, 1], dim_names=["dp"]) |
| 182 | + dist_tensor = paddle.distributed.shard_tensor( |
| 183 | + self.tensor, |
| 184 | + mesh, |
| 185 | + [paddle.distributed.Shard(0)], |
| 186 | + ) |
| 187 | + dist_tensor_split, _ = split_args_kwargs_into_chunks( |
| 188 | + (dist_tensor,), |
| 189 | + None, |
| 190 | + 2, |
| 191 | + ) |
| 192 | + if self.rank == 0: |
| 193 | + is_equal = ( |
| 194 | + dist_tensor_split[0][0] |
| 195 | + ._local_value() |
| 196 | + .equal_all(dense_tensor[0][0][:2]) |
| 197 | + ) |
| 198 | + assert is_equal.item() |
| 199 | + is_equal = ( |
| 200 | + dist_tensor_split[1][0] |
| 201 | + ._local_value() |
| 202 | + .equal_all(dense_tensor[0][0][2:]) |
| 203 | + ) |
| 204 | + assert is_equal.item() |
| 205 | + else: |
| 206 | + is_equal = ( |
| 207 | + dist_tensor_split[0][0] |
| 208 | + ._local_value() |
| 209 | + .equal_all(dense_tensor[1][0][:2]) |
| 210 | + ) |
| 211 | + assert is_equal.item() |
| 212 | + is_equal = ( |
| 213 | + dist_tensor_split[1][0] |
| 214 | + ._local_value() |
| 215 | + .equal_all(dense_tensor[1][0][2:]) |
| 216 | + ) |
| 217 | + assert is_equal.item() |
| 218 | + chunk1 = dist_tensor_split[0][0] |
| 219 | + chunk2 = dist_tensor_split[1][0] |
| 220 | + chunk_spec = [TensorChunkSpec(0)] |
| 221 | + merged_chunk = merge_chunks([chunk1, chunk2], chunk_spec) |
| 222 | + if self.rank == 0: |
| 223 | + is_equal = merged_chunk._local_value().equal_all(base_tensor[:4]) |
| 224 | + assert is_equal.item() |
| 225 | + else: |
| 226 | + is_equal = merged_chunk._local_value().equal_all(base_tensor[4:]) |
| 227 | + assert is_equal.item() |
| 228 | + |
| 229 | + def run_all_tests(self): |
| 230 | + """Run all test methods""" |
| 231 | + self.test_tensor_chunk_spec() |
| 232 | + self.test_split_args_kwargs() |
| 233 | + self.test_merge_chunks() |
| 234 | + self.test_nested_structure() |
| 235 | + self.test_dist_tensor_split_and_merge() |
| 236 | + |
| 237 | + |
| 238 | +if __name__ == "__main__": |
| 239 | + TestMicrobatch().run_all_tests() |
0 commit comments