|
20 | 20 | from .image import set_image_backend # noqa: F401
|
21 | 21 | from .image import get_image_backend # noqa: F401
|
22 | 22 | from .image import image_load # noqa: F401
|
23 |
| -from .models import LeNet as models_LeNet |
24 |
| -import paddle.utils.deprecated as deprecated |
| 23 | +from .datasets import DatasetFolder # noqa: F401 |
| 24 | +from .datasets import ImageFolder # noqa: F401 |
| 25 | +from .datasets import MNIST # noqa: F401 |
| 26 | +from .datasets import FashionMNIST # noqa: F401 |
| 27 | +from .datasets import Flowers # noqa: F401 |
| 28 | +from .datasets import Cifar10 # noqa: F401 |
| 29 | +from .datasets import Cifar100 # noqa: F401 |
| 30 | +from .datasets import VOC2012 # noqa: F401 |
| 31 | +from .models import ResNet # noqa: F401 |
| 32 | +from .models import resnet18 # noqa: F401 |
| 33 | +from .models import resnet34 # noqa: F401 |
| 34 | +from .models import resnet50 # noqa: F401 |
| 35 | +from .models import resnet101 # noqa: F401 |
| 36 | +from .models import resnet152 # noqa: F401 |
| 37 | +from .models import MobileNetV1 # noqa: F401 |
| 38 | +from .models import mobilenet_v1 # noqa: F401 |
| 39 | +from .models import MobileNetV2 # noqa: F401 |
| 40 | +from .models import mobilenet_v2 # noqa: F401 |
| 41 | +from .models import VGG # noqa: F401 |
| 42 | +from .models import vgg11 # noqa: F401 |
| 43 | +from .models import vgg13 # noqa: F401 |
| 44 | +from .models import vgg16 # noqa: F401 |
| 45 | +from .models import vgg19 # noqa: F401 |
| 46 | +from .models import LeNet # noqa: F401 |
| 47 | +from .transforms import BaseTransform # noqa: F401 |
| 48 | +from .transforms import Compose # noqa: F401 |
| 49 | +from .transforms import Resize # noqa: F401 |
| 50 | +from .transforms import RandomResizedCrop # noqa: F401 |
| 51 | +from .transforms import CenterCrop # noqa: F401 |
| 52 | +from .transforms import RandomHorizontalFlip # noqa: F401 |
| 53 | +from .transforms import RandomVerticalFlip # noqa: F401 |
| 54 | +from .transforms import Transpose # noqa: F401 |
| 55 | +from .transforms import Normalize # noqa: F401 |
| 56 | +from .transforms import BrightnessTransform # noqa: F401 |
| 57 | +from .transforms import SaturationTransform # noqa: F401 |
| 58 | +from .transforms import ContrastTransform # noqa: F401 |
| 59 | +from .transforms import HueTransform # noqa: F401 |
| 60 | +from .transforms import ColorJitter # noqa: F401 |
| 61 | +from .transforms import RandomCrop # noqa: F401 |
| 62 | +from .transforms import Pad # noqa: F401 |
| 63 | +from .transforms import RandomRotation # noqa: F401 |
| 64 | +from .transforms import Grayscale # noqa: F401 |
| 65 | +from .transforms import ToTensor # noqa: F401 |
| 66 | +from .transforms import to_tensor # noqa: F401 |
| 67 | +from .transforms import hflip # noqa: F401 |
| 68 | +from .transforms import vflip # noqa: F401 |
| 69 | +from .transforms import resize # noqa: F401 |
| 70 | +from .transforms import pad # noqa: F401 |
| 71 | +from .transforms import rotate # noqa: F401 |
| 72 | +from .transforms import to_grayscale # noqa: F401 |
| 73 | +from .transforms import crop # noqa: F401 |
| 74 | +from .transforms import center_crop # noqa: F401 |
| 75 | +from .transforms import adjust_brightness # noqa: F401 |
| 76 | +from .transforms import adjust_contrast # noqa: F401 |
| 77 | +from .transforms import adjust_hue # noqa: F401 |
| 78 | +from .transforms import normalize # noqa: F401 |
25 | 79 |
|
26 | 80 | __all__ = [ #noqa
|
27 | 81 | 'set_image_backend', 'get_image_backend', 'image_load'
|
28 | 82 | ]
|
29 |
| - |
30 |
| - |
31 |
| -class LeNet(models_LeNet): |
32 |
| - """LeNet model from |
33 |
| - `"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_ |
34 |
| -
|
35 |
| - Args: |
36 |
| - num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer |
37 |
| - will not be defined. Default: 10. |
38 |
| -
|
39 |
| - Examples: |
40 |
| - .. code-block:: python |
41 |
| -
|
42 |
| - from paddle.vision.models import LeNet |
43 |
| -
|
44 |
| - model = LeNet() |
45 |
| - """ |
46 |
| - |
47 |
| - @deprecated( |
48 |
| - since="2.0.0", |
49 |
| - update_to="paddle.vision.models.LeNet", |
50 |
| - level=1, |
51 |
| - reason="Please use new API in models, paddle.vision.LeNet will be removed in future" |
52 |
| - ) |
53 |
| - def __init__(self, num_classes=10): |
54 |
| - super(LeNet, self).__init__(num_classes=10) |
55 |
| - self.num_classes = num_classes |
56 |
| - self.features = nn.Sequential( |
57 |
| - nn.Conv2D( |
58 |
| - 1, 6, 3, stride=1, padding=1), |
59 |
| - nn.ReLU(), |
60 |
| - nn.MaxPool2D(2, 2), |
61 |
| - nn.Conv2D( |
62 |
| - 6, 16, 5, stride=1, padding=0), |
63 |
| - nn.ReLU(), |
64 |
| - nn.MaxPool2D(2, 2)) |
65 |
| - |
66 |
| - if num_classes > 0: |
67 |
| - self.fc = nn.Sequential( |
68 |
| - nn.Linear(400, 120), |
69 |
| - nn.Linear(120, 84), nn.Linear(84, num_classes)) |
|
0 commit comments