@@ -381,16 +381,18 @@ def train(self):
381
381
tag = 'Training/learning_rate' ,
382
382
value = lr ,
383
383
step = self .cur_iter )
384
- max_mem_reserved = paddle .device .cuda .max_memory_reserved ()
385
- max_mem_allocated = paddle .device .cuda .max_memory_allocated (
386
- )
384
+ max_mem_reserved_str = ""
385
+ max_mem_allocated_str = ""
386
+ if paddle .device .is_compiled_with_cuda ():
387
+ max_mem_reserved_str = f"max_mem_reserved: { paddle .device .cuda .max_memory_reserved () // (1024 ** 2 )} MB,"
388
+ max_mem_allocated_str = f"max_mem_allocated: { paddle .device .cuda .max_memory_allocated () // (1024 ** 2 )} MB"
387
389
self .logger .info (
388
390
'[TRAIN] epoch={}/{}, iter={}/{} {}, lr={:.6f}, batch_cost: {:.6f} sec, '
389
- 'ips: {:.6f} images/s | ETA {}, max_mem_reserved: {} B, max_mem_allocated: {} B'
390
- . format ( self .cur_epoch , self .epochs , self .cur_iter ,
391
- self .iters , loss_log , lr , timer .speed ,
392
- timer .ips , timer . eta , max_mem_reserved ,
393
- max_mem_allocated ))
391
+ 'ips: {:.6f} images/s | ETA {}, {} {}' . format (
392
+ self .cur_epoch , self .epochs , self .cur_iter ,
393
+ self .iters , loss_log , lr , timer .speed , timer . ips ,
394
+ timer .eta , max_mem_reserved_str ,
395
+ max_mem_allocated_str ))
394
396
395
397
losses_sum .clear ()
396
398
0 commit comments