|
| 1 | +import os |
| 2 | +import math |
| 3 | +import numpy as np |
| 4 | +import paddle.v2 as paddle |
| 5 | +import paddle.v2.dataset.conll05 as conll05 |
| 6 | +import paddle.v2.evaluator as evaluator |
| 7 | +from paddle.v2.reader.creator import cloud_reader |
| 8 | + |
| 9 | +etcd_ip = os.getenv("ETCD_IP") |
| 10 | +etcd_endpoint = "http://" + etcd_ip + ":" + "2379" |
| 11 | + |
| 12 | +word_dict, verb_dict, label_dict = conll05.get_dict() |
| 13 | +word_dict_len = len(word_dict) |
| 14 | +label_dict_len = len(label_dict) |
| 15 | +pred_len = len(verb_dict) |
| 16 | + |
| 17 | +mark_dict_len = 2 |
| 18 | +word_dim = 32 |
| 19 | +mark_dim = 5 |
| 20 | +hidden_dim = 512 |
| 21 | +depth = 8 |
| 22 | +default_std = 1 / math.sqrt(hidden_dim) / 3.0 |
| 23 | +mix_hidden_lr = 1e-3 |
| 24 | + |
| 25 | + |
| 26 | +def d_type(size): |
| 27 | + return paddle.data_type.integer_value_sequence(size) |
| 28 | + |
| 29 | + |
| 30 | +def db_lstm(): |
| 31 | + #8 features |
| 32 | + word = paddle.layer.data(name='word_data', type=d_type(word_dict_len)) |
| 33 | + predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len)) |
| 34 | + |
| 35 | + ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len)) |
| 36 | + ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len)) |
| 37 | + ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len)) |
| 38 | + ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len)) |
| 39 | + ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len)) |
| 40 | + mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len)) |
| 41 | + |
| 42 | + emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True) |
| 43 | + std_0 = paddle.attr.Param(initial_std=0.) |
| 44 | + std_default = paddle.attr.Param(initial_std=default_std) |
| 45 | + |
| 46 | + predicate_embedding = paddle.layer.embedding( |
| 47 | + size=word_dim, |
| 48 | + input=predicate, |
| 49 | + param_attr=paddle.attr.Param(name='vemb', initial_std=default_std)) |
| 50 | + mark_embedding = paddle.layer.embedding( |
| 51 | + size=mark_dim, input=mark, param_attr=std_0) |
| 52 | + |
| 53 | + word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] |
| 54 | + emb_layers = [ |
| 55 | + paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para) |
| 56 | + for x in word_input |
| 57 | + ] |
| 58 | + emb_layers.append(predicate_embedding) |
| 59 | + emb_layers.append(mark_embedding) |
| 60 | + |
| 61 | + hidden_0 = paddle.layer.mixed( |
| 62 | + size=hidden_dim, |
| 63 | + bias_attr=std_default, |
| 64 | + input=[ |
| 65 | + paddle.layer.full_matrix_projection( |
| 66 | + input=emb, param_attr=std_default) for emb in emb_layers |
| 67 | + ]) |
| 68 | + |
| 69 | + lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0) |
| 70 | + hidden_para_attr = paddle.attr.Param( |
| 71 | + initial_std=default_std, learning_rate=mix_hidden_lr) |
| 72 | + |
| 73 | + lstm_0 = paddle.layer.lstmemory( |
| 74 | + input=hidden_0, |
| 75 | + act=paddle.activation.Relu(), |
| 76 | + gate_act=paddle.activation.Sigmoid(), |
| 77 | + state_act=paddle.activation.Sigmoid(), |
| 78 | + bias_attr=std_0, |
| 79 | + param_attr=lstm_para_attr) |
| 80 | + |
| 81 | + #stack L-LSTM and R-LSTM with direct edges |
| 82 | + input_tmp = [hidden_0, lstm_0] |
| 83 | + |
| 84 | + for i in range(1, depth): |
| 85 | + mix_hidden = paddle.layer.mixed( |
| 86 | + size=hidden_dim, |
| 87 | + bias_attr=std_default, |
| 88 | + input=[ |
| 89 | + paddle.layer.full_matrix_projection( |
| 90 | + input=input_tmp[0], param_attr=hidden_para_attr), |
| 91 | + paddle.layer.full_matrix_projection( |
| 92 | + input=input_tmp[1], param_attr=lstm_para_attr) |
| 93 | + ]) |
| 94 | + |
| 95 | + lstm = paddle.layer.lstmemory( |
| 96 | + input=mix_hidden, |
| 97 | + act=paddle.activation.Relu(), |
| 98 | + gate_act=paddle.activation.Sigmoid(), |
| 99 | + state_act=paddle.activation.Sigmoid(), |
| 100 | + reverse=((i % 2) == 1), |
| 101 | + bias_attr=std_0, |
| 102 | + param_attr=lstm_para_attr) |
| 103 | + |
| 104 | + input_tmp = [mix_hidden, lstm] |
| 105 | + |
| 106 | + feature_out = paddle.layer.mixed( |
| 107 | + size=label_dict_len, |
| 108 | + bias_attr=std_default, |
| 109 | + input=[ |
| 110 | + paddle.layer.full_matrix_projection( |
| 111 | + input=input_tmp[0], param_attr=hidden_para_attr), |
| 112 | + paddle.layer.full_matrix_projection( |
| 113 | + input=input_tmp[1], param_attr=lstm_para_attr) |
| 114 | + ], ) |
| 115 | + |
| 116 | + return feature_out |
| 117 | + |
| 118 | + |
| 119 | +def load_parameter(file_name, h, w): |
| 120 | + with open(file_name, 'rb') as f: |
| 121 | + f.read(16) # skip header. |
| 122 | + return np.fromfile(f, dtype=np.float32).reshape(h, w) |
| 123 | + |
| 124 | + |
| 125 | +def main(): |
| 126 | + paddle.init() |
| 127 | + |
| 128 | + # define network topology |
| 129 | + feature_out = db_lstm() |
| 130 | + target = paddle.layer.data(name='target', type=d_type(label_dict_len)) |
| 131 | + crf_cost = paddle.layer.crf( |
| 132 | + size=label_dict_len, |
| 133 | + input=feature_out, |
| 134 | + label=target, |
| 135 | + param_attr=paddle.attr.Param( |
| 136 | + name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr)) |
| 137 | + |
| 138 | + crf_dec = paddle.layer.crf_decoding( |
| 139 | + size=label_dict_len, |
| 140 | + input=feature_out, |
| 141 | + label=target, |
| 142 | + param_attr=paddle.attr.Param(name='crfw')) |
| 143 | + evaluator.sum(input=crf_dec) |
| 144 | + |
| 145 | + # create parameters |
| 146 | + parameters = paddle.parameters.create(crf_cost) |
| 147 | + parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32)) |
| 148 | + |
| 149 | + # create optimizer |
| 150 | + optimizer = paddle.optimizer.Momentum( |
| 151 | + momentum=0, |
| 152 | + learning_rate=2e-2, |
| 153 | + regularization=paddle.optimizer.L2Regularization(rate=8e-4), |
| 154 | + model_average=paddle.optimizer.ModelAverage( |
| 155 | + average_window=0.5, max_average_window=10000), ) |
| 156 | + |
| 157 | + trainer = paddle.trainer.SGD( |
| 158 | + cost=crf_cost, |
| 159 | + parameters=parameters, |
| 160 | + update_equation=optimizer, |
| 161 | + extra_layers=crf_dec) |
| 162 | + |
| 163 | + reader = paddle.batch( |
| 164 | + paddle.reader.shuffle(cloud_reader( |
| 165 | + ["/pfs/dlnel/public/dataset/conll05/conl105_train-*"], |
| 166 | + etcd_endpoint), buf_size=8192), batch_size=10) |
| 167 | + |
| 168 | + feeding = { |
| 169 | + 'word_data': 0, |
| 170 | + 'ctx_n2_data': 1, |
| 171 | + 'ctx_n1_data': 2, |
| 172 | + 'ctx_0_data': 3, |
| 173 | + 'ctx_p1_data': 4, |
| 174 | + 'ctx_p2_data': 5, |
| 175 | + 'verb_data': 6, |
| 176 | + 'mark_data': 7, |
| 177 | + 'target': 8 |
| 178 | + } |
| 179 | + |
| 180 | + def event_handler(event): |
| 181 | + if isinstance(event, paddle.event.EndIteration): |
| 182 | + if event.batch_id % 100 == 0: |
| 183 | + print "Pass %d, Batch %d, Cost %f, %s" % ( |
| 184 | + event.pass_id, event.batch_id, event.cost, event.metrics) |
| 185 | + if event.batch_id % 1000 == 0: |
| 186 | + result = trainer.test(reader=reader, feeding=feeding) |
| 187 | + print "\nTest with Pass %d, Batch %d, %s" % ( |
| 188 | + event.pass_id, event.batch_id, result.metrics) |
| 189 | + |
| 190 | + if isinstance(event, paddle.event.EndPass): |
| 191 | + # save parameters |
| 192 | + with open('params_pass_%d.tar' % event.pass_id, 'w') as f: |
| 193 | + parameters.to_tar(f) |
| 194 | + |
| 195 | + result = trainer.test(reader=reader, feeding=feeding) |
| 196 | + print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) |
| 197 | + |
| 198 | + trainer.train( |
| 199 | + reader=reader, |
| 200 | + event_handler=event_handler, |
| 201 | + num_passes=1, |
| 202 | + feeding=feeding) |
| 203 | + |
| 204 | + test_creator = paddle.dataset.conll05.test() |
| 205 | + test_data = [] |
| 206 | + for item in test_creator(): |
| 207 | + test_data.append(item[0:8]) |
| 208 | + if len(test_data) == 1: |
| 209 | + break |
| 210 | + |
| 211 | + predict = paddle.layer.crf_decoding( |
| 212 | + size=label_dict_len, |
| 213 | + input=feature_out, |
| 214 | + param_attr=paddle.attr.Param(name='crfw')) |
| 215 | + probs = paddle.infer( |
| 216 | + output_layer=predict, |
| 217 | + parameters=parameters, |
| 218 | + input=test_data, |
| 219 | + field='id') |
| 220 | + assert len(probs) == len(test_data[0][0]) |
| 221 | + labels_reverse = {} |
| 222 | + for (k, v) in label_dict.items(): |
| 223 | + labels_reverse[v] = k |
| 224 | + pre_lab = [labels_reverse[i] for i in probs] |
| 225 | + print pre_lab |
| 226 | + |
| 227 | + |
| 228 | +if __name__ == '__main__': |
| 229 | + main() |
0 commit comments