Skip to content

Commit 5cbb32b

Browse files
authored
modify ppyoloe docs, test=document_fix (#5784)
1 parent f55126e commit 5cbb32b

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

configs/ppyoloe/README.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ PP-YOLOE is composed of following methods:
3434
**Notes:**
3535

3636
- PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
37-
- PP-YOLOE used 8 GPUs for mixed precision training, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ).
37+
- PP-YOLOE used 8 GPUs for mixed precision training, if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)**.
3838
- PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, **CUDA 10.2**, **CUDNN 7.6.5**, **TensorRT 6.0.1.8** in TensorRT mode.
3939
- Refer to [Speed testing](#Speed-testing) to reproduce the speed testing results of PP-YOLOE.
4040
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.
@@ -49,7 +49,7 @@ Training PP-YOLOE with mixed precision on 8 GPUs with following command
4949
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --amp
5050
```
5151

52-
** Notes: ** use `--amp` to train with default config to avoid out of memeory.
52+
**Notes:** use `--amp` to train with default config to avoid out of memeory.
5353

5454
### Evaluation
5555

@@ -158,7 +158,7 @@ CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inferenc
158158

159159
```
160160

161-
**Notes: **
161+
**Notes:**
162162
- TensorRT will perform optimization for the current hardware platform according to the definition of the network, generate an inference engine and serialize it into a file. This inference engine is only applicable to the current hardware hardware platform. If your hardware and software platform has not changed, you can set `use_static=True` in [enable_tensorrt_engine](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/python/infer.py#L660). In this way, the serialized file generated will be saved in the `output_inference` folder, and the saved serialized file will be loaded the next time when TensorRT is executed.
163163
- PaddleDetection release/2.4 and later versions will support NMS calling TensorRT, which requires PaddlePaddle release/2.3 and later versions.
164164

@@ -170,7 +170,7 @@ Model | AP | AP<sub>50</sub>
170170
[YOLOv5](https://github.com/ultralytics/yolov5) | 26.0 | 42.7
171171
**PP-YOLOE** | **30.5** | **46.4**
172172

173-
**Note**
173+
**Notes**
174174
- Here, we use [VisDrone](https://github.com/VisDrone/VisDrone-Dataset) dataset, and to detect 9 objects including `person, bicycles, car, van, truck, tricyle, awning-tricyle, bus, motor`.
175175
- Above models trained using official default config, and load pretrained parameters on COCO dataset.
176176
- *Due to the limited time, more verification results will be supplemented in the future. You are also welcome to contribute to PP-YOLOE*

configs/ppyoloe/README_cn.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ PP-YOLOE由以下方法组成
3434
**注意:**
3535

3636
- PP-YOLOE模型使用COCO数据集中train2017作为训练集,使用val2017和test-dev2017作为测试集,Box AP<sup>test</sup>为`mAP(IoU=0.5:0.95)`评估结果。
37-
- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ)调整学习率和迭代次数
37+
- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率
3838
- PP-YOLOE模型推理速度测试采用单卡V100,batch size=1进行测试,使用**CUDA 10.2**, **CUDNN 7.6.5**,TensorRT推理速度测试使用**TensorRT 6.0.1.8**
3939
- 参考[速度测试](#速度测试)以复现PP-YOLOE推理速度测试结果。
4040
- 如果你设置了`--run_benchnark=True`, 你首先需要安装以下依赖`pip install pynvml psutil GPUtil`
@@ -49,7 +49,7 @@ PP-YOLOE由以下方法组成
4949
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --amp
5050
```
5151

52-
** 注意: ** 使用默认配置训练需要设置`--amp`以避免显存溢出.
52+
**注意:** 使用默认配置训练需要设置`--amp`以避免显存溢出.
5353

5454
### 评估
5555

0 commit comments

Comments
 (0)