Skip to content

Commit d85b834

Browse files
authored
fix release/2.0 modelzoo link(#2678)
1 parent ffde607 commit d85b834

File tree

5 files changed

+53
-40
lines changed

5 files changed

+53
-40
lines changed

configs/fcos/README.md

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -12,10 +12,9 @@ FCOS (Fully Convolutional One-Stage Object Detection) is a fast anchor-free obje
1212

1313
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
1414
| :-------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
15-
| ResNet50-FPN | FCOS | 2 | 1x | ---- | 39.6 | [下载链接](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/fcos/fcos_r50_fpn_1x_coco.yml) |
16-
| ResNet50-FPN | FCOS+DCN | 2 | 1x | ---- | 44.3 | [下载链接](https://paddledet.bj.bcebos.com/models/fcos_dcn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/fcos/fcos_dcn_r50_fpn_1x_coco.yml) |
17-
| ResNet50-FPN | FCOS+multiscale_train | 2 | 2x | ---- | 41.8 | [下载链接](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_multiscale_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/fcos/fcos_r50_fpn_multiscale_2x_coco.yml) |
18-
15+
| ResNet50-FPN | FCOS | 2 | 1x | ---- | 39.6 | [下载链接](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/fcos/fcos_r50_fpn_1x_coco.yml) |
16+
| ResNet50-FPN | FCOS+DCN | 2 | 1x | ---- | 44.3 | [下载链接](https://paddledet.bj.bcebos.com/models/fcos_dcn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/fcos/fcos_dcn_r50_fpn_1x_coco.yml) |
17+
| ResNet50-FPN | FCOS+multiscale_train | 2 | 2x | ---- | 41.8 | [下载链接](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_multiscale_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/fcos/fcos_r50_fpn_multiscale_2x_coco.yml) |
1918
**Notes:**
2019

2120
- FCOS is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`.

configs/ppyolo/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods:
7070

7171
**Notes:**
7272

73-
- PP-YOLO_MobileNetV3 is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
73+
- PP-YOLO_MobileNetV3 is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP50<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
7474
- PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/static/docs/FAQ.md).
7575
- PP-YOLO_MobileNetV3 inference speed is tested on Kirin 990 with 1 thread.
7676

@@ -83,7 +83,7 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods:
8383

8484
**Notes:**
8585

86-
- PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
86+
- PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
8787
- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/static/docs/FAQ.md).
8888
- PP-YOLO-tiny inference speed is tested on Kirin 990 with 4 threads by arm8
8989
- we alse provide PP-YOLO-tiny post quant inference model, which can compress model to **1.3MB** with nearly no inference on inference speed and performance

configs/ppyolo/README_cn.md

Lines changed: 16 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ PP-YOLO从如下方面优化和提升YOLOv3模型的精度和速度:
5555
**注意:**
5656

5757
- PP-YOLO模型使用COCO数据集中train2017作为训练集,使用val2017和test-dev2017作为测试集,Box AP<sup>test</sup>为`mAP(IoU=0.5:0.95)`评估结果。
58-
- PP-YOLO模型训练过程中使用8 GPUs,每GPU batch size为24进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/FAQ.md)调整学习率和迭代次数。
58+
- PP-YOLO模型训练过程中使用8 GPUs,每GPU batch size为24进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/static/docs/FAQ.md)调整学习率和迭代次数。
5959
- PP-YOLO模型推理速度测试采用单卡V100,batch size=1进行测试,使用CUDA 10.2, CUDNN 7.5.1,TensorRT推理速度测试使用TensorRT 5.1.2.2。
6060
- PP-YOLO模型FP32的推理速度测试数据为使用`tools/export_model.py`脚本导出模型后,使用`deploy/python/infer.py`脚本中的`--run_benchnark`参数使用Paddle预测库进行推理速度benchmark测试结果, 且测试的均为不包含数据预处理和模型输出后处理(NMS)的数据(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致)。
6161
- TensorRT FP16的速度测试相比于FP32去除了`yolo_box`(bbox解码)部分耗时,即不包含数据预处理,bbox解码和NMS(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致)。
@@ -69,9 +69,23 @@ PP-YOLO从如下方面优化和提升YOLOv3模型的精度和速度:
6969
| PP-YOLO_MobileNetV3_small | 4 | 32 | 16MB | 320 | 17.2 | 33.8 | 21.5 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_small_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_mbv3_small_coco.yml) |
7070

7171
- PP-YOLO_MobileNetV3 模型使用COCO数据集中train2017作为训练集,使用val2017作为测试集,Box AP<sup>val</sup>为`mAP(IoU=0.5:0.95)`评估结果, Box AP50<sup>val</sup>为`mAP(IoU=0.5)`评估结果。
72-
- PP-YOLO_MobileNetV3 模型训练过程中使用4GPU,每GPU batch size为32进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/FAQ.md)调整学习率和迭代次数。
72+
- PP-YOLO_MobileNetV3 模型训练过程中使用4GPU,每GPU batch size为32进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/static/docs/FAQ.md)调整学习率和迭代次数。
7373
- PP-YOLO_MobileNetV3 模型推理速度测试环境配置为麒麟990芯片单线程。
7474

75+
### PP-YOLO tiny
76+
77+
| 模型 | GPU个数 | 每GPU图片个数 | 模型体积 | 量化后模型体积 | 输入尺寸 | Box AP<sup>val</sup> | Kirin 990 4xCore(FPS) | 模型下载 | 配置文件 | 量化后模型下载 |
78+
|:---------:|:-------:|:---------:|:---------:| :-------------------: | :---------: | :------------------: | :-------------------: | :------: | :----: | :--------------: |
79+
| PP-YOLO tiny | 8 | 32 | 4.2MB | **1.3M** | 320 | 20.6 | 92.3 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_tiny_650e_coco.yml) | [推理模型](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
80+
| PP-YOLO tiny | 8 | 32 | 4.2MB | **1.3M** | 416 | 22.7 | 65.4 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_tiny_650e_coco.yml) | [推理模型](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
81+
82+
**注意:**
83+
84+
- PP-YOLO-tiny 在COCO train2017数据集上进行训练,在val2017数据集上进行评估,Box AP<sup>val</sup> 是`mAP(IoU=0.5:0.95)`的评估结果。
85+
- PP-YOLO-tiny 使用8个GPU进行训练,每个GPU上的batch size为32,如果GPU数量和最小批量大小发生变化,则应根据[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/static/docs/FAQ.md)调整学习速率和迭代次数。
86+
- PP-YOLO-tiny 是利用arm8在Kirin 990上4个线程来测试推理速度的。
87+
- 我们还提供了PP-YOLO-tiny 量化后的推理模型, 它可以将模型压缩到**1.3MB**,并且几乎不需要对推理速度和性能进行任何推理。
88+
7589
### Pascal VOC数据集上的PP-YOLO
7690

7791
PP-YOLO在Pascal VOC数据集上训练模型如下:

configs/ssd/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,8 +6,8 @@
66

77
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
88
| :-------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
9-
| VGG | SSD | 8 | 240e | ---- | 77.8 | [下载链接](https://paddledet.bj.bcebos.com/models/ssd_vgg16_300_240e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ssd/ssd_vgg16_300_240e_voc.yml) |
10-
| MobileNet v1 | SSD | 32 | 120e | ---- | 73.8 | [下载链接](https://paddledet.bj.bcebos.com/models/ssd_mobilenet_v1_300_120e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ssd/ssd_mobilenet_v1_300_120e_voc.yml) |
9+
| VGG | SSD | 8 | 240e | ---- | 77.8 | [下载链接](https://paddledet.bj.bcebos.com/models/ssd_vgg16_300_240e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ssd/ssd_vgg16_300_240e_voc.yml) |
10+
| MobileNet v1 | SSD | 32 | 120e | ---- | 73.8 | [下载链接](https://paddledet.bj.bcebos.com/models/ssd_mobilenet_v1_300_120e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ssd/ssd_mobilenet_v1_300_120e_voc.yml) |
1111

1212
**注意:** SSD-VGG使用4GPU在总batch size为32下训练240个epoch。SSD-MobileNetv1使用2GPU在总batch size为64下训练120周期。
1313

0 commit comments

Comments
 (0)