diff --git a/configs/smalldet/README.md b/configs/smalldet/README.md
index a5ec2b86c4a..2839d5e7dd5 100644
--- a/configs/smalldet/README.md
+++ b/configs/smalldet/README.md
@@ -1,4 +1,4 @@
-# PP-YOLOE 小目标检测模型(PP-YOLOE Small Object Detection)
+# PP-YOLOE-SOD 小目标检测模型(PP-YOLOE Small Object Detection)



@@ -6,7 +6,8 @@
- [简介](#简介)
- [模型库](#模型库)
- [VisDrone模型](#VisDrone模型)
- - [基础模型](#基础模型)
+ - [COCO模型](#COCO模型)
+ - [切图模型](#切图模型)
- [拼图模型](#拼图模型)
- [数据集准备](#数据集准备)
- [模型库使用说明](#模型库使用说明)
@@ -22,10 +23,12 @@
## 简介
PaddleDetection团队提供了针对VisDrone-DET、DOTA水平框、Xview等小目标场景数据集的基于PP-YOLOE的检测模型,以及提供了一套使用[SAHI](https://github.com/obss/sahi)(Slicing Aided Hyper Inference)工具切图和拼图的方案,用户可以下载模型进行使用。
+AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像检测案例全流程实操](https://aistudio.baidu.com/aistudio/projectdetail/5036782),欢迎一起动手实践学习。
+
**注意:**
-- **是否需要切图**,建议参照[切图使用说明](#切图使用说明)中的[统计数据集分布](#统计数据集分布)先分析一下数据集再确定,一般数据集所有目标均极小的时候推荐切图训练和切图预测。
-- 不通过切图拼图而直接使用原图的方案也可以参照[visdrone](./visdrone)。
-- 第三方AI Studio教程案例可参考[PPYOLOE:遥感场景下的小目标检测与部署(切图版)](https://aistudio.baidu.com/aistudio/projectdetail/4493701)和[涨分神器!基于PPYOLOE的切图和拼图解决方案](https://aistudio.baidu.com/aistudio/projectdetail/4438275)。
+ - **是否需要切图**,建议参照[切图使用说明](#切图使用说明)中的[统计数据集分布](#统计数据集分布)先分析一下数据集再确定,一般数据集中**所有目标均极小**的情况下推荐切图训练和切图预测。
+ - 不通过切图拼图而**直接使用原图**的方案也可以参照[visdrone](./visdrone)。
+ - 第三方AI Studio教程案例可参考 [PPYOLOE:遥感场景下的小目标检测与部署(切图版)](https://aistudio.baidu.com/aistudio/projectdetail/4493701) 和 [涨分神器!基于PPYOLOE的切图和拼图解决方案](https://aistudio.baidu.com/aistudio/projectdetail/4438275)。
## 模型库
@@ -36,25 +39,38 @@ PaddleDetection团队提供了针对VisDrone-DET、DOTA水平框、Xview等小
|:---------|:------:|:------:| :----: | :------:| :------: | :------:| :----: | :------:|
|PP-YOLOE-s| 23.5 | 39.9 | 19.4 | 33.6 | 23.68 | 40.66 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_crn_s_80e_visdrone.yml) |
|PP-YOLOE-P2-Alpha-s| 24.4 | 41.6 | 20.1 | 34.7 | 24.55 | 42.19 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_p2_alpha_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_crn_s_p2_alpha_80e_visdrone.yml) |
-|PP_YOLOE_plus_sod_s| 25.1 | 42.8 | 20.7 | 36.2 | 25.16 | 43.86 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_s_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_plus_sod_crn_s_80e_visdrone.yml) |
+|**PP-YOLOE+_SOD-s**| **25.1** | **42.8** | **20.7** | **36.2** | **25.16** | **43.86** | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_s_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_plus_sod_crn_s_80e_visdrone.yml) |
|PP-YOLOE-l| 29.2 | 47.3 | 23.5 | 39.1 | 28.00 | 46.20 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_crn_l_80e_visdrone.yml) |
|PP-YOLOE-P2-Alpha-l| 30.1 | 48.9 | 24.3 | 40.8 | 28.47 | 48.16 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_p2_alpha_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_crn_l_p2_alpha_80e_visdrone.yml) |
-|PP_YOLOE_plus_sod_l| 31.9 | 52.1 | 25.6 | 43.5 | 30.25 | 51.18 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml) |
+|**PP-YOLOE+_SOD-l**| **31.9** | **52.1** | **25.6** | **43.5** | **30.25** | **51.18** | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml) |
|PP-YOLOE-Alpha-largesize-l| 41.9 | 65.0 | 32.3 | 53.0 | 37.13 | 61.15 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_alpha_largesize_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_crn_l_alpha_largesize_80e_visdrone.yml) |
|PP-YOLOE-P2-Alpha-largesize-l| 41.3 | 64.5 | 32.4 | 53.1 | 37.49 | 51.54 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_p2_alpha_largesize_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_crn_l_p2_alpha_largesize_80e_visdrone.yml) |
-|PP-YOLOE-plus-largesize-l | 43.3 | 66.7 | 33.5 | 54.7 | 38.24 | 62.76 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_largesize_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_plus_crn_l_largesize_80e_visdrone.yml) |
-|PP-YOLOE-plus_sod-largesize_l | 42.7 | 65.9 | 33.6 | 55.1 | 38.4 | 63.07 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.yml) |
+|PP-YOLOE+_largesize-l | 43.3 | 66.7 | 33.5 | 54.7 | 38.24 | 62.76 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_largesize_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_plus_crn_l_largesize_80e_visdrone.yml) |
+|**PP-YOLOE+_SOD-largesize-l** | 42.7 | 65.9 | **33.6** | **55.1** | **38.4** | **63.07** | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.pdparams) | [配置文件](visdrone/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.yml) |
**注意:**
- - VisDrone-DET数据集**可使用原图训练,也可使用切图后训练**,上表中的模型均为**使用原图训练**,也使用**原图评估预测**,推荐直接使用带**sod**的模型配置文件去训练评估和预测部署。
+ - 上表中的模型均为**使用原图训练**,也**使用原图评估预测**,AP精度均为**原图验证集**上评估的结果。
+ - VisDrone-DET数据集**可使用原图训练,也可使用切图后训练**,通过数据集统计分布分析,推荐使用**原图训练**,推荐直接使用带**SOD**的模型配置文件去训练评估和预测部署,在显卡算力有限时也可使用切图后训练。
- 上表中的模型指标均是使用VisDrone-DET的train子集作为训练集,使用VisDrone-DET的val子集和test_dev子集作为验证集。
- - **sod**表示使用**基于向量的DFL算法**和针对小目标的**中心先验优化策略**,并**在模型的Neck结构中加入transformer**。
+ - **SOD**表示使用**基于向量的DFL算法**和针对小目标的**中心先验优化策略**,并**在模型的Neck结构中加入transformer**。
- **P2**表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。
- **Alpha**表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。
- **largesize**表示使用**以1600尺度为基础的多尺度训练**和**1920尺度预测**,相应的训练batch_size也减小,以速度来换取高精度。
-### 基础模型
+### COCO模型
+
+| 模型 | mAPval
0.5:0.95 | AP0.5 | AP0.75 | APsmall | APmedium | APlarge | ARsmall | ARmedium | ARlarge | 下载链接 | 配置文件 |
+|:--------:|:-----------------------:|:----------:|:-----------:|:------------:|:-------------:|:-----------:|:------------:|:-------------:|:------------:|:-------:|:-------:|
+|PP-YOLOE+_l| 52.9 | 70.1 | 57.9 | 35.2 | 57.5 | 69.1 | 56.0 | 77.9 | 86.9 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams) | [配置文件](../ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml) |
+|**PP-YOLOE+_SOD-l**| 53.0 | **70.4** | 57.7 | **37.1** | 57.5 | 69.0 | **56.5** | 77.5 | 86.7 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_coco.pdparams) | [配置文件](./ppyoloe_plus_sod_crn_l_80e_coco.yml) |
+
+**注意:**
+ - 上表中的模型均为**使用原图训练**,也**原图评估预测**,网络输入尺度为640x640,训练集为COCO的train2017,验证集为val2017,均为8卡总batch_size为64训练80 epoch。
+ - **SOD**表示使用**基于向量的DFL算法**和针对小目标的**中心先验优化策略**,并**在模型的Neck结构中加入transformer**,可在 APsmall 上提升1.9。
+
+
+### 切图模型
| 模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAPval
0.5:0.95 | APval
0.5 | 下载链接 | 配置文件 |
|:---------|:---------------:|:---------------:|:---------------:|:------:|:-----------------------:|:-------------------:|:---------:| :-----: |
@@ -63,7 +79,9 @@ PaddleDetection团队提供了针对VisDrone-DET、DOTA水平框、Xview等小
|PP-YOLOE-l| VisDrone-DET| 640 | 0.25 | 10 | 38.5 | 60.2 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
**注意:**
- - 上表中的模型均为使用**切图后的子图训练**,使用**子图评估预测**。
+ - 上表中的模型均为使用**切图后的子图训练**,且使用**切图后的子图评估预测**,AP精度均为**子图验证集**上评估的结果。
+ - **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。
+ - VisDrone-DET的模型与[拼图模型](#拼图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**切图后的子图验证集**上评估的结果。
### 拼图模型
@@ -74,8 +92,9 @@ PaddleDetection团队提供了针对VisDrone-DET、DOTA水平框、Xview等小
|PP-YOLOE-l (拼图评估)| VisDrone-DET| 640 | 0.25 | 10 | 37.2 | 59.4 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_visdrone_640_025_slice_infer.yml) |
**注意:**
- - 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,使用原图评估预测,和使用子图拼图评估预测。
+ - 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,**直接使用原图**评估预测,和**使用子图自动拼成原图**评估预测,AP精度均为**原图验证集**上评估的结果。。
- **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。
+ - VisDrone-DET的模型与[切图模型](#切图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**原图验证集**上评估的结果。
### 注意事项
diff --git a/configs/smalldet/ppyoloe_plus_sod_crn_l_80e_coco.yml b/configs/smalldet/ppyoloe_plus_sod_crn_l_80e_coco.yml
new file mode 100644
index 00000000000..ad4c52eac56
--- /dev/null
+++ b/configs/smalldet/ppyoloe_plus_sod_crn_l_80e_coco.yml
@@ -0,0 +1,31 @@
+_BASE_: [
+ '../datasets/coco_detection.yml',
+ '../runtime.yml',
+ '../ppyoloe/_base_/optimizer_80e.yml',
+ '../ppyoloe/_base_/ppyoloe_plus_crn.yml',
+ '../ppyoloe/_base_/ppyoloe_plus_reader.yml',
+]
+log_iter: 100
+snapshot_epoch: 5
+weights: output/ppyoloe_plus_sod_crn_l_80e_coco/model_final
+
+pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_l_obj365_pretrained.pdparams
+depth_mult: 1.0
+width_mult: 1.0
+
+CustomCSPPAN:
+ num_layers: 4
+ use_trans: True
+
+PPYOLOEHead:
+ reg_range: [-2, 17]
+ static_assigner_epoch: -1
+ assigner:
+ name: TaskAlignedAssigner_CR
+ center_radius: 1
+ nms:
+ name: MultiClassNMS
+ nms_top_k: 1000
+ keep_top_k: 300
+ score_threshold: 0.01
+ nms_threshold: 0.7
diff --git a/configs/smalldet/visdrone/README.md b/configs/smalldet/visdrone/README.md
index 08328872d13..93367b19dce 100644
--- a/configs/smalldet/visdrone/README.md
+++ b/configs/smalldet/visdrone/README.md
@@ -13,18 +13,20 @@ PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基
|:---------|:------:|:------:| :----: | :------:| :------: | :------:| :----: | :------:|
|PP-YOLOE-s| 23.5 | 39.9 | 19.4 | 33.6 | 23.68 | 40.66 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_s_80e_visdrone.yml) |
|PP-YOLOE-P2-Alpha-s| 24.4 | 41.6 | 20.1 | 34.7 | 24.55 | 42.19 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_p2_alpha_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_s_p2_alpha_80e_visdrone.yml) |
-|PP_YOLOE_plus_sod_s| 25.1 | 42.8 | 20.7 | 36.2 | 25.16 | 43.86 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_s_80e_visdrone.pdparams) | [配置文件](./ppyoloe_plus_sod_crn_s_80e_visdrone.yml) |
+|**PP-YOLOE+_SOD-s**| **25.1** | **42.8** | **20.7** | **36.2** | **25.16** | **43.86** | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_s_80e_visdrone.pdparams) | [配置文件](./ppyoloe_plus_sod_crn_s_80e_visdrone.yml) |
|PP-YOLOE-l| 29.2 | 47.3 | 23.5 | 39.1 | 28.00 | 46.20 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_80e_visdrone.yml) |
|PP-YOLOE-P2-Alpha-l| 30.1 | 48.9 | 24.3 | 40.8 | 28.47 | 48.16 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_p2_alpha_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_p2_alpha_80e_visdrone.yml) |
-|PP_YOLOE_plus_sod_l| 31.9 | 52.1 | 25.6 | 43.5 | 30.25 | 51.18 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams) | [配置文件](./ppyoloe_plus_sod_crn_l_80e_visdrone.yml) |
+|**PP-YOLOE+_SOD-l**| **31.9** | **52.1** | **25.6** | **43.5** | **30.25** | **51.18** | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams) | [配置文件](./ppyoloe_plus_sod_crn_l_80e_visdrone.yml) |
|PP-YOLOE-Alpha-largesize-l| 41.9 | 65.0 | 32.3 | 53.0 | 37.13 | 61.15 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_alpha_largesize_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_alpha_largesize_80e_visdrone.yml) |
|PP-YOLOE-P2-Alpha-largesize-l| 41.3 | 64.5 | 32.4 | 53.1 | 37.49 | 51.54 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_p2_alpha_largesize_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_p2_alpha_largesize_80e_visdrone.yml) |
-|PP-YOLOE-plus-largesize-l | 43.3 | 66.7 | 33.5 | 54.7 | 38.24 | 62.76 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_largesize_80e_visdrone.pdparams) | [配置文件](./ppyoloe_plus_crn_l_largesize_80e_visdrone.yml) |
-|PP-YOLOE-plus_sod-largesize_l | 42.7 | 65.9 | 33.6 | 55.1 | 38.4 | 63.07 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.pdparams) | [配置文件](./ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.yml) |
+|PP-YOLOE+_largesize-l | 43.3 | 66.7 | 33.5 | 54.7 | 38.24 | 62.76 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_largesize_80e_visdrone.pdparams) | [配置文件](./ppyoloe_plus_crn_l_largesize_80e_visdrone.yml) |
+|**PP-YOLOE+_SOD-largesize-l** | 42.7 | 65.9 | **33.6** | **55.1** | **38.4** | **63.07** | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.pdparams) | [配置文件](./ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.yml) |
**注意:**
- - 上表中的模型均为**使用原图训练**,也使用**原图评估预测**。
- - **sod**表示使用**基于向量的DFL算法**和针对小目标的**中心先验优化策略**,并**在模型的Neck结构中加入transformer**。
+ - 上表中的模型均为**使用原图训练**,也**使用原图评估预测**,AP精度均为**原图验证集**上评估的结果。
+ - VisDrone-DET数据集**可使用原图训练,也可使用切图后训练**,通过数据集统计分布分析,推荐使用**原图训练**,推荐直接使用带**SOD**的模型配置文件去训练评估和预测部署,在显卡算力有限时也可使用切图后训练。
+ - 上表中的模型指标均是使用VisDrone-DET的train子集作为训练集,使用VisDrone-DET的val子集和test_dev子集作为验证集。
+ - **SOD**表示使用**基于向量的DFL算法**和针对小目标的**中心先验优化策略**,并**在模型的Neck结构中加入transformer**。
- **P2**表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。
- **Alpha**表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。
- **largesize**表示使用**以1600尺度为基础的多尺度训练**和**1920尺度预测**,相应的训练batch_size也减小,以速度来换取高精度。
@@ -38,8 +40,9 @@ PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基
|PP-YOLOE-l (拼图评估)| VisDrone-DET| 640 | 0.25 | 10 | 37.2 | 59.4 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
**注意:**
- - 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,使用原图评估预测,和使用子图拼图评估预测。
+ - 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,**直接使用原图**评估预测,和**使用子图自动拼成原图**评估预测,AP精度均为**原图验证集**上评估的结果。。
- **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。
+ - VisDrone-DET的模型与[切图模型](../README.md#切图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**原图验证集**上评估的结果。
## 注意事项:
@@ -49,13 +52,13 @@ PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基
- 切图训练模型的配置文件及训练相关流程请参照[README](../README.cn)。
-## 部署模型
+## PP-YOLOE+_SOD 部署模型
| 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) |
| :-------- | :--------: | :---------------------: | :----------------: |
-| PP_YOLOE_plus_sod_s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_s_80e_visdrone_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_s_80e_visdrone_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_s_80e_visdrone_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_s_80e_visdrone_wo_nms.onnx) |
-| PP_YOLOE_plus_sod_l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_80e_visdrone_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_80e_visdrone_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_80e_visdrone_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_80e_visdrone_wo_nms.onnx) |
-| PP-YOLOE-plus_sod-largesize_l | 1920 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone_wo_nms.onnx) |
+| PP-YOLOE+_SOD-s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_s_80e_visdrone_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_s_80e_visdrone_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_s_80e_visdrone_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_s_80e_visdrone_wo_nms.onnx) |
+| PP-YOLOE+_SOD-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_80e_visdrone_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_80e_visdrone_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_80e_visdrone_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_80e_visdrone_wo_nms.onnx) |
+| PP-YOLOE+_SOD-largesize-l | 1920 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/smalldet/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone_wo_nms.onnx) |
## 测速