|
1 |
| -# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
| 1 | +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
2 | 2 | #
|
3 | 3 | # Licensed under the Apache License, Version 2.0 (the "License");
|
4 | 4 | # you may not use this file except in compliance with the License.
|
|
31 | 31 |
|
32 | 32 | @moduleinfo(
|
33 | 33 | name="ernie_v2_eng_base",
|
34 |
| - version="2.0.2", |
| 34 | + version="2.0.3", |
35 | 35 | summary=
|
36 | 36 | "Baidu's ERNIE 2.0, Enhanced Representation through kNowledge IntEgration, max_seq_len=512 when predtrained. The module is executed as paddle.dygraph.",
|
37 | 37 | author="paddlepaddle",
|
@@ -65,26 +65,25 @@ def __init__(
|
65 | 65 | "current task name 'sequence_classification' was renamed to 'seq-cls', "
|
66 | 66 | "'sequence_classification' has been deprecated and will be removed in the future.", )
|
67 | 67 | if task == 'seq-cls':
|
68 |
| - self.model = ErnieForSequenceClassification.from_pretrained(pretrained_model_name_or_path='ernie-2.0-en', |
69 |
| - num_classes=self.num_classes, |
70 |
| - **kwargs) |
| 68 | + self.model = ErnieForSequenceClassification.from_pretrained( |
| 69 | + pretrained_model_name_or_path='ernie-2.0-base-en', num_classes=self.num_classes, **kwargs) |
71 | 70 | self.criterion = paddle.nn.loss.CrossEntropyLoss()
|
72 | 71 | self.metric = paddle.metric.Accuracy()
|
73 | 72 | elif task == 'token-cls':
|
74 |
| - self.model = ErnieForTokenClassification.from_pretrained(pretrained_model_name_or_path='ernie-2.0-en', |
| 73 | + self.model = ErnieForTokenClassification.from_pretrained(pretrained_model_name_or_path='ernie-2.0-base-en', |
75 | 74 | num_classes=self.num_classes,
|
76 | 75 | **kwargs)
|
77 | 76 | self.criterion = paddle.nn.loss.CrossEntropyLoss()
|
78 | 77 | self.metric = ChunkEvaluator(label_list=[self.label_map[i] for i in sorted(self.label_map.keys())],
|
79 | 78 | suffix=suffix)
|
80 | 79 | elif task == 'text-matching':
|
81 |
| - self.model = ErnieModel.from_pretrained(pretrained_model_name_or_path='ernie-2.0-en', **kwargs) |
| 80 | + self.model = ErnieModel.from_pretrained(pretrained_model_name_or_path='ernie-2.0-base-en', **kwargs) |
82 | 81 | self.dropout = paddle.nn.Dropout(0.1)
|
83 | 82 | self.classifier = paddle.nn.Linear(self.model.config['hidden_size'] * 3, 2)
|
84 | 83 | self.criterion = paddle.nn.loss.CrossEntropyLoss()
|
85 | 84 | self.metric = paddle.metric.Accuracy()
|
86 | 85 | elif task is None:
|
87 |
| - self.model = ErnieModel.from_pretrained(pretrained_model_name_or_path='ernie-2.0-en', **kwargs) |
| 86 | + self.model = ErnieModel.from_pretrained(pretrained_model_name_or_path='ernie-2.0-base-en', **kwargs) |
88 | 87 | else:
|
89 | 88 | raise RuntimeError("Unknown task {}, task should be one in {}".format(task, self._tasks_supported))
|
90 | 89 |
|
@@ -176,4 +175,4 @@ def get_tokenizer(*args, **kwargs):
|
176 | 175 | """
|
177 | 176 | Gets the tokenizer that is customized for this module.
|
178 | 177 | """
|
179 |
| - return ErnieTokenizer.from_pretrained(pretrained_model_name_or_path='ernie-2.0-en', *args, **kwargs) |
| 178 | + return ErnieTokenizer.from_pretrained(pretrained_model_name_or_path='ernie-2.0-base-en', *args, **kwargs) |
0 commit comments