Skip to content

Commit 357dce9

Browse files
committed
paper
1 parent f8892c0 commit 357dce9

File tree

14 files changed

+904
-0
lines changed

14 files changed

+904
-0
lines changed

doc/imgs/survey1.png

220 KB
Loading

doc/imgs/survey3.png

34.4 KB
Loading

doc/imgs/survey4.png

69.4 KB
Loading

doc/imgs/survey5.png

69.3 KB
Loading

doc/imgs/survey6.png

63.1 KB
Loading

doc/imgs/survey7.png

53.6 KB
Loading

paper/AAAI2021.md

Lines changed: 101 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,101 @@
1+
# 推荐系统工业界顶会论文总结——AAAI 2021
2+
3+
[知乎专栏](https://zhuanlan.zhihu.com/p/467270467)
4+
5+
6+
1. [Who You Would Like to Share With? A Study of Share Recommendation in Social E-Commerce](http://www.shichuan.org/doc/99.pdf)
7+
Author(Institute): Junxiong Zhu(Alibaba二作)
8+
KeyWords: Share Recommendation; Social E-commerce
9+
Dataset: Taobao
10+
11+
2. [A Hybrid Bandit Framework for Diversified Recommendation](https://arxiv.org/pdf/2012.13245.pdf)
12+
Author(Institute): Qinxu Ding(Alibaba)
13+
KeyWords: Diversified Recommendation
14+
Dataset: Movielens-100K; Movielens-1M; Anime
15+
16+
3. [FairRec: Fairness-aware News Recommendation with Decomposed Adversarial Learning](https://arxiv.org/pdf/2006.16742.pdf)
17+
Author(Institute): Fangzhao Wu(Microsoft)
18+
KeyWords: Decomposed Adversarial Learning; News Recommendation
19+
20+
4. [Out-of-Town Recommendation with Travel Intention Modeling](https://arxiv.org/pdf/2101.12555.pdf)
21+
Author(Institute): Xinjiang Lu(Baidu二作)
22+
KeyWords: Out-of-Town Recommendation; POIs
23+
Dataset: real-world travel behavior datasets
24+
25+
5. [Personalized Adaptive Meta Learning for Cold-Start User Preference Prediction](https://arxiv.org/pdf/2012.11842.pdf)
26+
Author(Institute): Yu Gong(Alibaba二作)
27+
KeyWords: Preference prediction; Cold-start; Meta Learning
28+
Dataset: MovieLens1M; BookCrossing
29+
30+
6. [Reinforcement Learning with a Disentangled Universal Value Function for Item Recommendation](https://arxiv.org/pdf/2104.02981.pdf)
31+
Author(Institute): Kai Wang(NetEase)
32+
KeyWords: Reinforcement Learning; Item Recommendation
33+
Dataset: MovieLens25m; Taobao; RecSys15; YooChoose
34+
35+
7. [RevMan: Revenue-Aware Multi-Task Online Insurance Recommendation](https://ojs.aaai.org/index.php/AAAI/article/view/16105)
36+
Author(Institute): Yi Zhang(WeSure)
37+
KeyWords: Revenue-aware; Insurance Recommendation
38+
39+
8. [Graph Heterogeneous Multi-Relational Recommendation](https://ojs.aaai.org/index.php/AAAI/article/view/16515)
40+
Author(Institute): Xiuqiang He(Huawei二作)
41+
KeyWords: Multi-Relational Recommendation
42+
Dataset: Beibei; Taobao
43+
44+
9. [Hierarchical Reinforcement Learning for Integrated Recommendation](https://ojs.aaai.org/index.php/AAAI/article/view/16580)
45+
Author(Institute): Ruobing Xie(Wechat)
46+
KeyWords: Integrated Recommendation; Reinforcement Learning
47+
Dataset: IRec-4B
48+
49+
10. [U-BERT: Pre-Training User Representations for Improved Recommendation](https://ojs.aaai.org/index.php/AAAI/article/view/16557)
50+
Author(Institute): Zhaopeng Qiu(Tencent)
51+
KeyWords: U-BERT
52+
Dataset: Amazon; Yelp
53+
54+
11. [Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation](https://ojs.aaai.org/index.php/AAAI/article/view/16576)
55+
Author(Institute): Chao Huang(JD二作)
56+
KeyWords: Multi-Behavior Recommendation; Graph Transformer
57+
Dataset: Yelp; ML10M; Online Retail
58+
59+
12. [A User-Adaptive Layer Selection Framework for Very Deep Sequential Recommender Models](https://ojs.aaai.org/index.php/AAAI/article/view/16518)
60+
Author(Institute): Fajie Yuan(Tencent二作)
61+
KeyWords: Sequential Recommender Systems
62+
Dataset: Weishi; ML20; ML100
63+
64+
13. [DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems](https://arxiv.org/pdf/1909.03602.pdf)
65+
Author(Institute): Changsheng Gu(Bytedance二作)
66+
KeyWords: Deep Reinforcement Learning; Online Advertising
67+
Dataset: Douyin
68+
69+
14. [Noninvasive Self-Attention for Side Information Fusion in Sequential Recommendation](https://arxiv.org/pdf/2103.03578.pdf)
70+
Author(Institute): Xiaoguang Li(Huawei二作)
71+
KeyWords: Sequential Recommendation; Attention
72+
Dataset: ML-1m; ML-20m
73+
74+
15. [Knowledge-Enhanced Top-K Recommendation in Poincaré Ball](https://arxiv.org/pdf/2101.04852.pdf)
75+
Author(Institute): Yingxue Zhang(Huawei二作)
76+
KeyWords: Knowledge-Enhanced; Top-K Recommendation
77+
Dataset: Amazon-book; Last-FM; Yelp2018
78+
79+
16. [Dynamic Memory Based Attention Network for Sequential Recommendation](https://arxiv.org/pdf/2102.09269.pdf)
80+
Author(Institute): Jianwei Zhang(Alibaba二作)
81+
KeyWords: Sequential Recommendation; Attention
82+
Dataset: MovieLens; Taobao; JD; XLong
83+
84+
17. [Asynchronous Stochastic Gradient Descent for Extreme-Scale Recommender Systems](https://ojs.aaai.org/index.php/AAAI/article/view/16108)
85+
Author(Institute): Kun Zhao(Alibaba二作)
86+
KeyWords: Extreme-Scale Recommender Systems
87+
88+
18. [On Estimating Recommendation Evaluation Metrics under Sampling](https://arxiv.org/pdf/2103.01474.pdf)
89+
Author(Institute): Jing Gao(iLambda二作)
90+
KeyWords: Metrics
91+
Dataset: ml-1m; citeulike
92+
93+
19. [Knowledge-Aware Coupled Graph Neural Network for Social Recommendation](https://ojs.aaai.org/index.php/AAAI/article/view/16533)
94+
Author(Institute): Chao Huang(JD)
95+
KeyWords: Social Recommendation; Graph Neural Network
96+
Dataset: Epinions; Yelp; E-Commerce
97+
98+
20. [Graph-Enhanced Multi-Task Learning of Multi-Level Transition Dynamics for Session-Based Recommendation](https://ojs.aaai.org/index.php/AAAI/article/view/16534)
99+
Author(Institute): Chao Huang(JD)
100+
KeyWords: Session-based Recommendation
101+
Dataset: Yoochoose; Diginetica; Retailrocket

paper/IJCAI2021.md

Lines changed: 34 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
# 推荐系统工业界顶会论文总结——IJCAI 2021
2+
3+
[知乎专栏](https://zhuanlan.zhihu.com/p/467273797)
4+
5+
6+
1. [AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System](https://www.ijcai.org/proceedings/2021/0290.pdf)
7+
Author(Institute): Yuanxing Zhang(Alibaba三作)
8+
KeyWords: MLP; Recommender System
9+
Dataset: Alimama
10+
11+
2. [UNBERT: User-News Matching BERT for News Recommendation](https://www.ijcai.org/proceedings/2021/0462.pdf)
12+
Author(Institute): Qi Zhang(Huawei)
13+
KeyWords: BERT; News Recommendation
14+
Dataset: MIND
15+
16+
3. [Pattern-enhanced Contrastive Policy Learning Network for Sequential Recommendation](https://www.ijcai.org/proceedings/2021/0220.pdf)
17+
Author(Institute): Long Xia(Baidu四作)
18+
KeyWords: Sequential Recommendation
19+
Dataset: Amazon; LastFM; ML-1m
20+
21+
4. [Improving Sequential Recommendation Consistency with Self-Supervised Imitation](https://www.ijcai.org/proceedings/2021/0457.pdf)
22+
Author(Institute): Hongshen Chen(JD三作)
23+
KeyWords: Sequential Recommendation; Self-Supervised Imitation
24+
Dataset: Amazon
25+
26+
5. [User-as-Graph: User Modeling with Heterogeneous Graph Pooling for News Recommendation](https://www.ijcai.org/proceedings/2021/0224.pdf)
27+
Author(Institute): Fangzhao Wu(Microsoft二作)
28+
KeyWords: News Recommendation; Heterogeneous Graph Pooling
29+
Dataset: MIND; Microsoft News
30+
31+
6. [SafeDrug: Dual Molecular Graph Encoders for Recommending Effective and Safe Drug Combinations](https://arxiv.org/pdf/2105.02711.pdf)
32+
Author(Institute): Cao Xiao(IQVIA)
33+
KeyWords: Safe Drug Recommendations
34+
Dataset: MIMIC-III

paper/KDD2021.md

Lines changed: 187 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,187 @@
1+
# 推荐系统工业界顶会论文总结——KDD 2021
2+
3+
[知乎专栏](https://zhuanlan.zhihu.com/p/467276380)
4+
5+
6+
1. [Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning](https://www.microsoft.com/en-us/research/uploads/prod/2021/05/KDD2021-anchorkg.pdf)
7+
Author(Institute): Jianxun Lian(Microsoft二作)
8+
KeyWords: news recommender; knowledge graph; recommendation reasoning
9+
Dataset: MIND; Bing News
10+
11+
2. [Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System](https://arxiv.org/pdf/2010.15363.pdf)
12+
Author(Institute): Jinfeng Yi(JD三作)
13+
KeyWords: Recommendation; Popularity Bias; Causal Reasoning
14+
Dataset: ML10M; Adressa; Globo; Gowalla; Yelp
15+
16+
3. [Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489.pdf)
17+
Author(Institute): Dongbo Xi(Meituan)
18+
KeyWords: Sequential Dependence; Multi-step Conversions; Multi-task Learning; Targeted Display Advertising
19+
Dataset: Meituan; Co-Branded Credit Cards; Ali-CCP
20+
21+
4. [Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising](https://arxiv.org/pdf/2105.14688.pdf)
22+
Author(Institute): Yudan Liu(WeChat三作)
23+
KeyWords: Look-alike; Audience Expansion; Meta Learning; Campaign
24+
Dataset: Tencent; WeChat
25+
26+
5. [Adversarial Feature Translation for Multi-domain Recommendation](https://nlp.csai.tsinghua.edu.cn/~xrb/publications/KDD-2021_AFT.pdf)
27+
Author(Institute): Xiaobo Hao(WeChat)
28+
KeyWords: recommender system; multi-domain recommendation; GAN
29+
Dataset: Netflix; MDR-5B
30+
31+
6. [Debiasing Learning based Cross-domain Recommendation](https://dl.acm.org/doi/abs/10.1145/3447548.3467067)
32+
Author(Institute): Yuxiao Dong(Alibaba二作)
33+
KeyWords: Debias
34+
35+
7. [MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems](https://keg.cs.tsinghua.edu.cn/jietang/publications/KDD21-Huang-et-al-MixGCF.pdf)
36+
Author(Institute): Yuxiao Dong(Facebook)
37+
KeyWords: Collaborative Filtering; Recommender Systems; Graph Neural Networks; Negative Samplin
38+
Dataset: Alibaba; Yelp2018; Amazon
39+
40+
8. [Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation](https://dl.acm.org/doi/10.1145/3447548.3467427)
41+
Author(Institute): Hao Gu(Tencent三作)
42+
KeyWords: Cold-start; Auto-Encoders; Denoise
43+
Dataset: WeChat
44+
45+
9. [Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning](https://www.microsoft.com/en-us/research/uploads/prod/2021/05/KDD2021-anchorkg.pdf)
46+
Author(Institute): Jianxun Lian(Microsoft二作)
47+
KeyWords: news recommender; knowledge graph; recommendation reasoning
48+
Dataset: MIND; Bing News
49+
50+
10. [A Semi-Personalized System for User Cold Start Recommendation on Music Streaming Apps](https://arxiv.org/pdf/2106.03819.pdf)
51+
Author(Institute): Léa Briand(Deezer)
52+
KeyWords: Recommender Systems; User Cold Start; Music Streaming Service; Semi-Personalization; Heterogeneous Data; A/B Testing
53+
Dataset: Deezer
54+
55+
11. [Architecture and Operation Adaptive Network for Online Recommendations](https://dl.acm.org/doi/10.1145/3447548.3467133)
56+
Author(Institute): Lang Lang(Didi Chuxing)
57+
KeyWords: Online Recommendations
58+
59+
12. [SEMI: A Sequential Multi-Modal Information Transfer Network for E-Commerce Micro-Video Recommendations](https://dl.acm.org/doi/10.1145/3447548.3467189)
60+
Author(Institute): Chenyi Lei(Alibaba)
61+
KeyWords: E-Commerce Micro-Video Recommendation; Information Transfer
62+
Dataset: Taobao
63+
64+
13. [Curriculum Meta-Learning for Next POI Recommendation](https://dl.acm.org/doi/abs/10.1145/3447548.3467132)
65+
Author(Institute): Miao Fan(Baidu三作)
66+
KeyWords: POI
67+
Dataset: Baidu Map
68+
69+
14. [Learning to Embed Categorical Features without Embedding Tables for Recommendation](https://arxiv.org/pdf/2010.10784.pdf)
70+
Author(Institute): Wang-Cheng Kang(Google)
71+
KeyWords: Embed Categorical Features
72+
Dataset: Movielens20M; Amazon Book
73+
74+
15. [Preference Amplification in Recommender Systems](https://dl.acm.org/doi/abs/10.1145/3447548.3467298)
75+
Author(Institute): Smriti Bhagat(Facebook二作)
76+
KeyWords: Recommender systems; echo chambers; filter bubbles; fixed point
77+
Dataset: MovieLens 10M; Yahoo
78+
79+
16. [Data Poisoning Attack against Recommender System Using Incomplete and Perturbed Data](https://dl.acm.org/doi/abs/10.1145/3447548.3467233)
80+
Author(Institute): Yaliang Li(Alibaba三作)
81+
KeyWords: Attack
82+
83+
17. [Initialization Matters: Regularizing Manifold-informed Initialization for Neural Recommendation Systems](https://arxiv.org/pdf/2106.04993.pdf)
84+
Author(Institute): Chunyan Miao(Alibaba三作)
85+
KeyWords: network initialization; recommender systems; manifold learning
86+
Dataset: ML-1M; Steam; Anime
87+
88+
18. [We Know What You Want: An Advertising Strategy Recommender System for Online Advertising](https://arxiv.org/pdf/2105.14188.pdf)
89+
Author(Institute): Junqi Jin(Alibaba二作)
90+
KeyWords: E-commerce; Display Advertisement; Advertising Strategy Recommendation
91+
Dataset: online
92+
93+
19. [A Unified Solution to Constrained Bidding in Online Display Advertising](https://dl.acm.org/doi/10.1145/3447548.3467199)
94+
Author(Institute): Yue He(Alibaba)
95+
KeyWords: advertising
96+
Dataset: Taobao
97+
98+
20. [Clustering for Private Interest-based Advertising](https://dl.acm.org/doi/pdf/10.1145/3447548.3467180)
99+
Author(Institute): Alessandro Epasto(Google)
100+
KeyWords: Interest-based advertising; clustering; anonymity; privacy
101+
Dataset: Million Song; MovieLens
102+
103+
21. [Diversity driven Query Rewriting in Search Advertising](https://arxiv.org/pdf/2106.03816.pdf)
104+
Author(Institute): Nikit Begwani(Microsoft二作)
105+
KeyWords: sponsored search; query rewriting; natural language generation
106+
107+
22. [Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning](https://arxiv.org/pdf/2012.02298.pdf)
108+
Author(Institute): Chao Du(Alibaba)
109+
KeyWords: click-through rate (CTR); exploration-exploitation trade-off; advertising system; Gaussian process
110+
Dataset: Amazon
111+
112+
23. [Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce Advertising](https://arxiv.org/pdf/2106.03593.pdf)
113+
Author(Institute): Xiangyu Liu(Alibaba)
114+
KeyWords: Learning-based Mechanism Design; Neural Auction; E-commerce Advertising
115+
Dataset: Taobao
116+
117+
24. [Reinforcing Pretrained Models for Generating Attractive Text Advertisements](https://www.microsoft.com/en-us/research/uploads/prod/2021/06/KDD2021_AdGen_camera_ready.pdf)
118+
Author(Institute): Xiting Wang(Microsoft)
119+
KeyWords: Advertisement Generation; Pretrained Language Models; Reinforcement Learning; Natural Language Generation
120+
Dataset: Microsoft Bing
121+
122+
25. [Efficient Collaborative Filtering via Data Augmentation and Step-size Optimization](https://dl.acm.org/doi/abs/10.1145/3447548.3467380)
123+
Author(Institute): Xuejun Liao(SAS Institute Inc)
124+
KeyWords: Collaborative Filtering; Data Augmentation
125+
Dataset: MovieLens 1M
126+
127+
26. [Efficient Data-specific Model Search for Collaborative Filtering](https://arxiv.org/pdf/2106.07453.pdf)
128+
Author(Institute): Quanming Yao(4Paradigm)
129+
KeyWords: Collaborative Filtering
130+
Dataset: MovieLens-100K; MovieLens-1M; Yelp; Amazon-Book
131+
132+
27. [ML-based Visualization Recommendation: Learning to Recommend Visualizations from Data](https://arxiv.org/pdf/2009.12316.pdf)
133+
Author(Institute): Ryan A. [ Rossi(Adobe二作)
134+
KeyWords: Visualization recommendation; learning-based visualization recommendation; data visualization; machine learning; deep learning
135+
Dataset: Plot.ly
136+
137+
28. [PURE: Positive-Unlabeled Recommendation with Generative Adversarial Network](https://jianpeng-xu.github.io/publications/2021-zhou-KDD-PURE.pdf)
138+
Author(Institute): Jianpeng Xu(Walmart)
139+
KeyWords: Recommender systems; Positive-unlabeled learning
140+
Dataset: Movielens; Yelp
141+
142+
29. [Table2Charts: Recommending Charts by Learning Shared Table Representations](https://arxiv.org/pdf/2008.11015.pdf)
143+
Author(Institute): Mengyu Zhou(Microsoft)
144+
KeyWords: Table2seq; chart recommendation; deep Q-learning; copying mechanism; search sampling; transfer learning; table representations
145+
Dataset: Movielens; Yelp
146+
147+
30. [Automated Loss Function Search in Recommendations](https://arxiv.org/pdf/2106.06713.pdf)
148+
Author(Institute): Chong Wang(Bytedance四作)
149+
KeyWords: AutoML; Recommender Systems; Loss Functions
150+
Dataset: Criteo; ML-20m
151+
152+
31. [Bootstrapping Recommendations at Chrome Web Store](https://dl.acm.org/doi/pdf/10.1145/3447548.3467099)
153+
Author(Institute): Zhen Qin(Google)
154+
KeyWords: learning to rank; generalized additive models; text embedding
155+
Dataset: CWS
156+
157+
32. [Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems](https://arxiv.org/pdf/2005.12964.pdf)
158+
Author(Institute): Chang Zhou(Alibaba)
159+
KeyWords: candidate generation; bias reduction; inverse propensity weighting; contrastive learning; negative sampling
160+
Dataset: ML-1M; Beauty; Steam
161+
162+
33. [Device-Cloud Collaborative Learning for Recommendation](https://arxiv.org/pdf/2104.06624.pdf)
163+
Author(Institute): Jiangchao Yao(Alibaba)
164+
KeyWords: On-device Intelligence; Cloud Computing
165+
Dataset: Amazon; Movielens-1M; Taobao
166+
167+
34. [FleetRec: Large-Scale Recommendation Inference on Hybrid GPU-FPGA Clusters](https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/485153/1/FleetRec_camera_ready.pdf)
168+
Author(Institute): Kai Zeng(Alibaba四作)
169+
KeyWords: scalable recommendation
170+
171+
35. [Hierarchical Training: Scaling Deep Recommendation Models on Large CPU Clusters](https://dl.acm.org/doi/abs/10.1145/3447548.3467084)
172+
Author(Institute): Jiangchao Yao(Facebook)
173+
KeyWords: CPU Clusters
174+
175+
36. [Leveraging Tripartite Interaction Information from Live Stream E-Commerce for Improving Product Recommendation](https://arxiv.org/pdf/2106.03415.pdf)
176+
Author(Institute): Zhuoxuan Jiang(Tencent二作); Dong-Dong Chen(JD三作); Dongsheng Li (Microsoft五作)
177+
KeyWords: graph representation learning; multi-task learning; live streaming E-Commence; product recommendation
178+
Dataset: LSEC-Small; LSECLarge
179+
180+
37. [Sliding Spectrum Decomposition for Diversified Recommendation](https://arxiv.org/pdf/2107.05204.pdf)
181+
Author(Institute): Yanhua Huang(Xiaohongshu)
182+
KeyWords: Diversified Recommendation; Sliding Spectrum Decomposition; Item Embedding; Determinantal Point Process; CB2CF
183+
184+
38. [Towards the D-Optimal Online Experiment Design for Recommender Selection](https://dl.acm.org/doi/abs/10.1145/3447548.3467192)
185+
Author(Institute): Da Xu(Walmart)
186+
KeyWords: Recommender Selection
187+
Dataset: Walmart

0 commit comments

Comments
 (0)