|
8 | 8 |
|
9 | 9 | <h2 align="center">News<img src="./doc/imgs/rec_new_icon.png" width="40"/></h2>
|
10 | 10 |
|
| 11 | +* [2022/5/18] Add 3 algorithms::[aitm](models/multitask/aitm),[sign](models/rank/sign),[dsin](models/rank/dsin) |
11 | 12 | * [2022/3/21] Add a new [paper](./paper) directory , show our analysis of the top meeting papers of the recommendation system in 2021 years and the list of recommendation system papers in the industry for your reference.
|
12 | 13 | * [2022/3/10] Add 5 algorithms: [DCN_V2](models/rank/dcn_v2), [MHCN](models/recall/mhcn), [FLEN](models/rank/flen), [Dselect_K](models/multitask/dselect_k),[AutoFIS](models/rank/autofis)。
|
13 | 14 | * [2022/1/12] Add AI Studio [Online running](https://aistudio.baidu.com/aistudio/projectdetail/3240640) function, you can easily and quickly online experience our model on AI studio platform.
|
@@ -159,13 +160,18 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # Training wit
|
159 | 160 | | Rank | [FLEN](models/rank/flen/) | - | ✓ | ✓ | >=2.1.0 | [2019][FLEN: Leveraging Field for Scalable CTR Prediction]( https://arxiv.org/pdf/1911.04690.pdf) |
|
160 | 161 | | Rank | [DeepRec](models/rank/deeprec/) | - | ✓ | ✓ | >=2.1.0 | [2017][Training Deep AutoEncoders for Collaborative Filtering](https://arxiv.org/pdf/1708.01715v3.pdf) |
|
161 | 162 | | Rank | [AutoFIS](models/rank/autofis/) | - | ✓ | ✓ | >=2.1.0 | [KDD 2020][AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction](https://arxiv.org/pdf/2003.11235v3.pdf) |
|
162 |
| - | Rank | [DCN_V2](models/rank/dcn_v2/) | - | ✓ | ✓ | >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf) |
| 163 | + | Rank | [DCN_V2](models/rank/dcn_v2/) | - | ✓ | ✓ | >=2.1.0 | [WWW 2021][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/pdf/2008.13535v2.pdf)| |
| 164 | + | Rank | [DSIN](models/rank/dsin/) | - | ✓ | ✓ | >=2.1.0 | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.06482v1.pdf) | |
| 165 | + | Rank | [SIGN](models/rank/sign/)([doc](https://paddlerec.readthedocs.io/en/latest/models/rank/sign.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3869111) | ✓ | ✓ | >=2.1.0 | [AAAI 2021][Detecting Beneficial Feature Interactions for Recommender Systems](https://arxiv.org/pdf/2008.00404v6.pdf) | |
| 166 | + | Rank | [IPRec](models/rank/iprec/)([doc](https://paddl7erec.readthedocs.io/en/latest/models/rank/iprec.html)) | - | ✓ | ✓ | >=2.1.0 | [SIGIR 2021][Package Recommendation with Intra- and Inter-Package Attention Networks](http://nlp.csai.tsinghua.edu.cn/~xrb/publications/SIGIR-21_IPRec.pdf) | |
| 167 | + | Multi-Task | [AITM](models/rank/aitm/) | - | ✓ | ✓ | >=2.1.0 | [KDD 2021][Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising](https://arxiv.org/pdf/2105.08489v2.pdf) | |
163 | 168 | | Multi-Task | [PLE](models/multitask/ple/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/ple.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238938) | ✓ | ✓ | >=2.1.0 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) |
|
164 | 169 | | Multi-Task | [ESMM](models/multitask/esmm/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/esmm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238583) | ✓ | ✓ | >=2.1.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
|
165 | 170 | | Multi-Task | [MMOE](models/multitask/mmoe/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/mmoe.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238934) | ✓ | ✓ | >=2.1.0 | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
|
166 | 171 | | Multi-Task | [ShareBottom](models/multitask/share_bottom/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/share_bottom.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238943) | ✓ | ✓ | >=2.1.0 | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |
|
167 | 172 | | Multi-Task | [Maml](models/multitask/maml/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/maml.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3238412) | x | x | >=2.1.0 | [PMLR 2017][Model-agnostic meta-learning for fast adaptation of deep networks](https://arxiv.org/pdf/1703.03400.pdf) |
|
168 | 173 | | Multi-Task | [DSelect_K](models/multitask/dselect_k/)<br>([doc](https://paddlerec.readthedocs.io/en/latest/models/multitask/dselect_k.html)) | - | x | x | >=2.1.0 | [NeurIPS 2021][DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning](https://arxiv.org/pdf/2106.03760v3.pdf) |
|
| 174 | + | Multi-Task | [ESCM2](models/multitask/escm2/) | - | x | x | >=2.1.0 | [SIGIR 2022][ESCM2: Entire Space Counterfactual Multi-Task Model for Post-Click Conversion Rate Estimation](https://arxiv.org/pdf/2204.05125.pdf) | |
169 | 175 | | Re-Rank | [Listwise](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rerank/listwise/) | - | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [2019][Sequential Evaluation and Generation Framework for Combinatorial Recommender System](https://arxiv.org/pdf/1902.00245.pdf) |
|
170 | 176 |
|
171 | 177 | <h2 align="center">Community</h2>
|
|
0 commit comments