@@ -48,7 +48,25 @@ class LorenzEmbedding(base.Arch):
48
48
49
49
Examples:
50
50
>>> import ppsci
51
- >>> model = ppsci.arch.LorenzEmbedding(("x", "y"), ("u", "v"))
51
+ >>> model = ppsci.arch.LorenzEmbedding(
52
+ ... input_keys=("x", "y"),
53
+ ... output_keys=("u", "v"),
54
+ ... input_size=3,
55
+ ... hidden_size=500,
56
+ ... embed_size=32,
57
+ ... drop=0.0,
58
+ ... mean=None,
59
+ ... std=None,
60
+ ... )
61
+ >>> x_shape = [8, 3, 2]
62
+ >>> y_shape = [8, 3, 1]
63
+ >>> input_dict = {"x": paddle.rand(x_shape),
64
+ ... "y": paddle.rand(y_shape)}
65
+ >>> output_dict = model(input_dict)
66
+ >>> print(output_dict["u"].shape)
67
+ [8, 2, 3]
68
+ >>> print(output_dict["v"].shape)
69
+ [8, 3, 3]
52
70
"""
53
71
54
72
def __init__ (
@@ -209,7 +227,25 @@ class RosslerEmbedding(LorenzEmbedding):
209
227
210
228
Examples:
211
229
>>> import ppsci
212
- >>> model = ppsci.arch.RosslerEmbedding(("x", "y"), ("u", "v"))
230
+ >>> model = ppsci.arch.RosslerEmbedding(
231
+ ... input_keys=("x", "y"),
232
+ ... output_keys=("u", "v"),
233
+ ... input_size=3,
234
+ ... hidden_size=500,
235
+ ... embed_size=32,
236
+ ... drop=0.0,
237
+ ... mean=None,
238
+ ... std=None,
239
+ ... )
240
+ >>> x_shape = [8, 3, 2]
241
+ >>> y_shape = [8, 3, 1]
242
+ >>> input_dict = {"x": paddle.rand(x_shape),
243
+ ... "y": paddle.rand(y_shape)}
244
+ >>> output_dict = model(input_dict)
245
+ >>> print(output_dict["u"].shape)
246
+ [8, 2, 3]
247
+ >>> print(output_dict["v"].shape)
248
+ [8, 3, 3]
213
249
"""
214
250
215
251
def __init__ (
0 commit comments