Skip to content

Commit bb3001a

Browse files
[Doc] Update index and README (#997)
* update index.md * update volocityGAN to index and RAEDME(test=document_fix)
1 parent 43a619f commit bb3001a

File tree

2 files changed

+7
-8
lines changed

2 files changed

+7
-8
lines changed

README.md

+3-4
Original file line numberDiff line numberDiff line change
@@ -79,11 +79,9 @@ PaddleScience 是一个基于深度学习框架 PaddlePaddle 开发的科学计
7979
| 流固耦合 | [涡激振动](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/viv) | 机理驱动 | MLP | 半监督学习 | [Data](https://github.com/PaddlePaddle/PaddleScience/blob/develop/examples/fsi/VIV_Training_Neta100.mat) | [Paper](https://arxiv.org/abs/2206.03864)|
8080
| 多相流 | [气液两相流](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/bubble) | 机理驱动 | BubbleNet | 半监督学习 | [Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/BubbleNet/bubble.mat) | [Paper](https://pubs.aip.org/aip/adv/article/12/3/035153/2819394/Predicting-micro-bubble-dynamics-with-semi-physics)|
8181
| 多相流 | [twophasePINN](https://aistudio.baidu.com/projectdetail/5379212) | 机理驱动 | MLP | 无监督学习 | - | [Paper](https://doi.org/10.1016/j.mlwa.2021.100029)|
82-
| 多相流 | 非高斯渗透率场估计<sup>coming soon</sup> | 机理驱动 | cINN | 监督学习 | - | [Paper](https://pubs.aip.org/aip/adv/article/12/3/035153/2819394/Predicting-micro-bubble-dynamics-with-semi-physics)|
8382
| 流场高分辨率重构 | [2D 湍流流场重构](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/tempoGAN) | 数据驱动 | tempoGAN | 监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/tempoGAN/2d_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/tempoGAN/2d_valid.mat) | [Paper](https://dl.acm.org/doi/10.1145/3197517.3201304)|
8483
| 流场高分辨率重构 | [2D 湍流流场重构](https://aistudio.baidu.com/projectdetail/4493261?contributionType=1) | 数据驱动 | cycleGAN | 监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/tempoGAN/2d_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/tempoGAN/2d_valid.mat) | [Paper](https://arxiv.org/abs/2007.15324)|
8584
| 流场高分辨率重构 | [基于Voronoi嵌入辅助深度学习的稀疏传感器全局场重建](https://aistudio.baidu.com/projectdetail/5807904) | 数据驱动 | CNN | 监督学习 | [Data1](https://drive.google.com/drive/folders/1K7upSyHAIVtsyNAqe6P8TY1nS5WpxJ2c)<br>[Data2](https://drive.google.com/drive/folders/1pVW4epkeHkT2WHZB7Dym5IURcfOP4cXu)<br>[Data3](https://drive.google.com/drive/folders/1xIY_jIu-hNcRY-TTf4oYX1Xg4_fx8ZvD) | [Paper](https://arxiv.org/pdf/2202.11214.pdf) |
86-
| 流场高分辨率重构 | 基于扩散的流体超分重构<sup>coming soon</sup> | 数理融合 | DDPM | 监督学习 | - | [Paper](https://www.sciencedirect.com/science/article/pii/S0021999123000670)|
8785
| 求解器耦合 | [CFD-GCN](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/cfdgcn) | 数据驱动 | GCN | 监督学习 | [Data](https://aistudio.baidu.com/aistudio/datasetdetail/184778)<br>[Mesh](https://paddle-org.bj.bcebos.com/paddlescience/datasets/CFDGCN/meshes.tar) | [Paper](https://arxiv.org/abs/2007.04439)|
8886
| 受力分析 | [1D 欧拉梁变形](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/euler_beam) | 机理驱动 | MLP | 无监督学习 | - | - |
8987
| 受力分析 | [2D 平板变形](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/biharmonic2d) | 机理驱动 | MLP | 无监督学习 | - | [Paper](https://arxiv.org/abs/2108.07243) |
@@ -102,7 +100,6 @@ PaddleScience 是一个基于深度学习框架 PaddlePaddle 开发的科学计
102100
| 问题类型 | 案例名称 | 优化算法 | 模型类型 | 训练方式 | 数据集 | 参考资料 |
103101
|-----|---------|-----|---------|----|---------|---------|
104102
| 材料设计 | [散射板设计(反问题)](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/hpinns) | 数理融合 | 数据驱动 | 监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_valid.mat) | [Paper](https://arxiv.org/pdf/2102.04626.pdf) |
105-
| 材料生成 | 面向对称感知的周期性材料生成<sup>coming soon</sup> | 数据驱动 | SyMat | 监督学习 | - | - |
106103

107104
<br>
108105
<p align="center"><b>地球科学(AI for Earth Science)</b></p>
@@ -115,15 +112,17 @@ PaddleScience 是一个基于深度学习框架 PaddlePaddle 开发的科学计
115112
| 天气预报 | [GraphCast 气象预报](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/graphcast) | 数据驱动 | GraphCastNet | 监督学习 | - | [Paper](https://arxiv.org/abs/2212.12794) |
116113
| 大气污染物 | [UNet 污染物扩散](https://aistudio.baidu.com/projectdetail/5663515?channel=0&channelType=0&sUid=438690&shared=1&ts=1698221963752) | 数据驱动 | UNet | 监督学习 | [Data](https://aistudio.baidu.com/datasetdetail/198102) | - |
117114
| 天气预报 | [DGMR 气象预报](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/dgmr.md) | 数据驱动 | DGMR | 监督学习 | [UK dataset](https://huggingface.co/datasets/openclimatefix/nimrod-uk-1km) | [Paper](https://arxiv.org/pdf/2104.00954.pdf) |
115+
| 地震波形反演 | [VelocityGAN 地震波形反演](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/velocity_gan.md) | 数据驱动 | VelocityGAN | 监督学习 | [OpenFWI](https://openfwi-lanl.github.io/docs/data.html#vel) | [Paper](https://arxiv.org/abs/1809.10262v6) |
118116

119117
<!-- --8<-- [start:update] -->
120118
## 🕘最近更新
121119

120+
- 基于 PaddleScience 的 ADR 方程求解方法 [Physics-informed neural networks for advection–diffusion–Langmuir adsorption processes](https://doi.org/10.1063/5.0221924) 被 Physics of Fluids 2024 接受。
122121
- 添加 [IJCAI 2024: 任意三维几何外形车辆的风阻快速预测竞赛](https://competition.atomgit.com/competitionInfo?id=7f3f276465e9e845fd3a811d2d6925b5),track A, B, C 的 paddle/pytorch 代码链接。
123122
- 添加 SPINN(基于 Helmholtz3D 方程求解) [helmholtz3d](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/spinn/)
124123
- 添加 CVit(基于 Advection 方程和 N-S 方程求解) [CVit(Navier-Stokes)](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/ns_cvit/)[CVit(Advection)](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/adv_cvit/)
125124
- 添加 PirateNet(基于 Allen-cahn 方程和 N-S 方程求解) [Allen-Cahn](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/allen_cahn/)[LDC2D(Re3200)](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/ldc2d_steady/)
126-
- 基于 PaddleScience 的快速热仿真方法 [A fast general thermal simulation model based on MultiBranch Physics-Informed deep operator neural network](https://pubs.aip.org/aip/pof/article-abstract/36/3/037142/3277890/A-fast-general-thermal-simulation-model-based-on?redirectedFrom=fulltext) 被 Physics of Fluids 2024 接受。
125+
- 基于 PaddleScience 的快速热仿真方法 [A fast general thermal simulation model based on MultiBranch Physics-Informed deep operator neural network](https://doi.org/10.1063/5.0194245) 被 Physics of Fluids 2024 接受。
127126
- 添加多目标优化算法 [Relobralo](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/api/loss/mtl/#ppsci.loss.mtl.Relobralo)
128127
- 添加气泡流求解案例([Bubble](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/bubble))、机翼优化案例([DeepCFD](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/deepcfd/))、热传导仿真案例([HeatPINN](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/heat_pinn))、非线性短临预报模型([Nowcasting(仅推理)](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/nowcastnet))、拓扑优化案例([TopOpt](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/topopt))、矩形平板线弹性方程求解案例([Biharmonic2D](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/biharmonic2d))。
129128
- 添加二维血管案例([LabelFree-DNN-Surrogate](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/labelfree_DNN_surrogate/#4))、空气激波案例([ShockWave](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/shock_wave/))、去噪网络模型([DUCNN](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/DU_CNN))、风电预测模型([Deep Spatial Temporal](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/Deep-Spatio-Temporal))、域分解模型([XPINNs](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/XPINNs))、积分方程求解案例([Volterra Equation](https://paddlescience-docs.readthedocs.io/zh-cn/latest/zh/examples/volterra_ide))、分数阶方程求解案例([Fractional Poisson 2D](https://github.com/PaddlePaddle/PaddleScience/blob/develop/examples/fpde/fractional_poisson_2d.py))。

docs/index.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,11 @@
44
./README.md:status
55
--8<--
66

7+
🔥 [开放原子第二届开源大赛:飞桨科学计算工具组件开发大赛](https://competition.atomgit.com/competitionInfo?id=805ad94637707d062f24e54265d85731),总奖金25万人民币,火热报名中。
8+
79
🔥 [PaddlePaddle Hackathon 7th 开源贡献个人挑战赛](https://github.com/PaddlePaddle/Paddle/issues/67603)
810

9-
🔥 [CIKM 2024: AI辅助的先进空气动力学-优化汽车设计以实现最佳性能](https://competition.atomgit.com/competitionInfo?id=cda4e961b0c25858ca0fd2a4bdf87520)火热报名中
11+
🔥 [CIKM 2024: AI辅助的先进空气动力学-优化汽车设计以实现最佳性能](https://competition.atomgit.com/competitionInfo?id=cda4e961b0c25858ca0fd2a4bdf87520)已进入评奖阶段
1012

1113
🔥 [IJCAI 2024: 任意三维几何外形车辆的风阻快速预测竞赛](https://competition.atomgit.com/competitionInfo?id=7f3f276465e9e845fd3a811d2d6925b5),track A, B, C 代码:[paddle实现](https://github.com/PaddlePaddle/PaddleScience/tree/develop/jointContribution/IJCAI_2024) | [pytorch实现](https://competition.atomgit.com/competitionInfo?id=7f3f276465e9e845fd3a811d2d6925b5)(点击**排行榜**可查看各个赛道前10名的代码)
1214

@@ -115,11 +117,9 @@
115117
| 流固耦合 | [涡激振动](./zh/examples/viv.md) | 机理驱动 | MLP | 半监督学习 | [Data](https://github.com/PaddlePaddle/PaddleScience/blob/develop/examples/fsi/VIV_Training_Neta100.mat) | [Paper](https://arxiv.org/abs/2206.03864)|
116118
| 多相流 | [气液两相流](./zh/examples/bubble.md) | 机理驱动 | BubbleNet | 半监督学习 | [Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/BubbleNet/bubble.mat) | [Paper](https://pubs.aip.org/aip/adv/article/12/3/035153/2819394/Predicting-micro-bubble-dynamics-with-semi-physics)|
117119
| 多相流 | [twophasePINN](https://aistudio.baidu.com/projectdetail/5379212) | 机理驱动 | MLP | 无监督学习 | - | [Paper](https://doi.org/10.1016/j.mlwa.2021.100029)|
118-
| 多相流 | 非高斯渗透率场估计<sup>coming soon</sup> | 机理驱动 | cINN | 监督学习 | - | [Paper](https://pubs.aip.org/aip/adv/article/12/3/035153/2819394/Predicting-micro-bubble-dynamics-with-semi-physics)|
119120
| 流场高分辨率重构 | [2D 湍流流场重构](./zh/examples/tempoGAN.md) | 数据驱动 | tempoGAN | 监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/tempoGAN/2d_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/tempoGAN/2d_valid.mat) | [Paper](https://dl.acm.org/doi/10.1145/3197517.3201304)|
120121
| 流场高分辨率重构 | [2D 湍流流场重构](https://aistudio.baidu.com/projectdetail/4493261?contributionType=1) | 数据驱动 | cycleGAN | 监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/tempoGAN/2d_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/tempoGAN/2d_valid.mat) | [Paper](https://arxiv.org/abs/2007.15324)|
121122
| 流场高分辨率重构 | [基于Voronoi嵌入辅助深度学习的稀疏传感器全局场重建](https://aistudio.baidu.com/projectdetail/5807904) | 数据驱动 | CNN | 监督学习 | [Data1](https://drive.google.com/drive/folders/1K7upSyHAIVtsyNAqe6P8TY1nS5WpxJ2c)<br>[Data2](https://drive.google.com/drive/folders/1pVW4epkeHkT2WHZB7Dym5IURcfOP4cXu)<br>[Data3](https://drive.google.com/drive/folders/1xIY_jIu-hNcRY-TTf4oYX1Xg4_fx8ZvD) | [Paper](https://arxiv.org/pdf/2202.11214.pdf) |
122-
| 流场高分辨率重构 | 基于扩散的流体超分重构<sup>coming soon</sup> | 数理融合 | DDPM | 监督学习 | - | [Paper](https://www.sciencedirect.com/science/article/pii/S0021999123000670)|
123123
| 求解器耦合 | [CFD-GCN](./zh/examples/cfdgcn.md) | 数据驱动 | GCN | 监督学习 | [Data](https://aistudio.baidu.com/aistudio/datasetdetail/184778)<br>[Mesh](https://paddle-org.bj.bcebos.com/paddlescience/datasets/CFDGCN/meshes.tar) | [Paper](https://arxiv.org/abs/2007.04439)|
124124
| 受力分析 | [1D 欧拉梁变形](./zh/examples/euler_beam.md) | 机理驱动 | MLP | 无监督学习 | - | - |
125125
| 受力分析 | [2D 平板变形](./zh/examples/biharmonic2d.md) | 机理驱动 | MLP | 无监督学习 | - | [Paper](https://arxiv.org/abs/2108.07243) |
@@ -138,7 +138,6 @@
138138
| 问题类型 | 案例名称 | 优化算法 | 模型类型 | 训练方式 | 数据集 | 参考资料 |
139139
|-----|---------|-----|---------|----|---------|---------|
140140
| 材料设计 | [散射板设计(反问题)](./zh/examples/hpinns.md) | 数理融合 | 数据驱动 | 监督学习 | [Train Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_train.mat)<br>[Eval Data](https://paddle-org.bj.bcebos.com/paddlescience/datasets/hPINNs/hpinns_holo_valid.mat) | [Paper](https://arxiv.org/pdf/2102.04626.pdf) |
141-
| 材料生成 | 面向对称感知的周期性材料生成<sup>coming soon</sup> | 数据驱动 | SyMat | 监督学习 | - | - |
142141

143142
<br>
144143
<p align="center"><b>地球科学(AI for Earth Science)</b></p>
@@ -151,6 +150,7 @@
151150
| 天气预报 | [GraphCast 气象预报](./zh/examples/graphcast.md) | 数据驱动 | GraphCastNet | 监督学习 | - | [Paper](https://arxiv.org/abs/2212.12794) |
152151
| 大气污染物 | [UNet 污染物扩散](https://aistudio.baidu.com/projectdetail/5663515?channel=0&channelType=0&sUid=438690&shared=1&ts=1698221963752) | 数据驱动 | UNet | 监督学习 | [Data](https://aistudio.baidu.com/datasetdetail/198102) | - |
153152
| 天气预报 | [DGMR 气象预报](./zh/examples/dgmr.md) | 数据驱动 | DGMR | 监督学习 | [UK dataset](https://huggingface.co/datasets/openclimatefix/nimrod-uk-1km) | [Paper](https://arxiv.org/pdf/2104.00954.pdf) |
153+
| 地震波形反演 | [VelocityGAN 地震波形反演](./zh/examples/velocity_gan.md) | 数据驱动 | VelocityGAN | 监督学习 | [OpenFWI](https://openfwi-lanl.github.io/docs/data.html#vel) | [Paper](https://arxiv.org/abs/1809.10262v6) |
154154

155155
## 🚀快速安装
156156

0 commit comments

Comments
 (0)