Skip to content

Commit ef44a48

Browse files
authored
[] (#3205)
Signed-off-by: Yulv-git <yulvchi@qq.com>
1 parent 6fd48f1 commit ef44a48

File tree

30 files changed

+48
-48
lines changed

30 files changed

+48
-48
lines changed

EISeg/docs/remote_sensing.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ conda install gdal
4141

4242
### 2.1 数据加载
4343

44-
目前EISeg仅支持了*.tif/tiff图像后缀的的遥感影像读取,由于训练数据都是来自于RGB三通道的遥感图像切片,因此交互分割也仅在RGB三通道上完成,也就表示EISeg支持多波段数据的波段选择。
44+
目前EISeg仅支持了*.tif/tiff图像后缀的遥感影像读取,由于训练数据都是来自于RGB三通道的遥感图像切片,因此交互分割也仅在RGB三通道上完成,也就表示EISeg支持多波段数据的波段选择。
4545

4646
当使用EISeg打开GTiff图像时,会获取当前波段数,可通过波段设置的下拉列表进行设置。默认为[b1, b1, b1]。下例展示的是天宫一号多光谱数据设置真彩色:
4747

@@ -63,7 +63,7 @@ conda install gdal
6363
当打开标注的GTiff图像带有地理参考,可设置EISeg保存时保存为带有地理参考的GTiff和ESRI Shapefile。
6464

6565
- GTiff:已成为GIS和卫星遥感应用的行业图像标准文件。
66-
- ESRI Shapefile:是最常见的的矢量数据格式,Shapefile文件是美国环境系统研究所(ESRI)所研制的GIS文件系统格式文件,是工业标准的矢量数据文件。 所有的商业和开源GIS软件都支持。无处不在的它已成为行业标准。
66+
- ESRI Shapefile:是最常见的矢量数据格式,Shapefile文件是美国环境系统研究所(ESRI)所研制的GIS文件系统格式文件,是工业标准的矢量数据文件。 所有的商业和开源GIS软件都支持。无处不在的它已成为行业标准。
6767

6868
![82jlu-no59o](https://user-images.githubusercontent.com/71769312/141137726-76457454-5e9c-4ad0-85d6-d03f658ee63c.gif)
6969

Matting/deploy/human_matting_android_demo/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ This demo uses the MODNet with HRNet_W18 backbone to perform human matting. Plea
6363

6464
In order to be able to infer on Android phones, the dynamic graph model needs to be exported as a static graph model, and the input size of the image should be fixed when exporting.
6565

66-
First, update the [PaddleSeg](https://github.com/paddlepaddle/paddleseg/tree/develop) repository. Then `cd` to the `PaddleSeg/contrib/Matting` directory. Then put the downloaded modnet-hrnet_w18.pdparams (traing by youself is ok) on current directory(`PaddleSeg/contrib/Matting`). After that, fix the config file `configs/modnet_mobilenetv2.yml`(note: hrnet18 is used, but the config file `modnet_hrnet_w18.yml` is based on `modnet_mobilenetv2.yml`), where,modify the val_dataset field as follows:
66+
First, update the [PaddleSeg](https://github.com/paddlepaddle/paddleseg/tree/develop) repository. Then `cd` to the `PaddleSeg/contrib/Matting` directory. Then put the downloaded modnet-hrnet_w18.pdparams (training by youself is ok) on current directory(`PaddleSeg/contrib/Matting`). After that, fix the config file `configs/modnet_mobilenetv2.yml`(note: hrnet18 is used, but the config file `modnet_hrnet_w18.yml` is based on `modnet_mobilenetv2.yml`), where,modify the val_dataset field as follows:
6767

6868
``` yml
6969
val_dataset:

Matting/ppmatting/models/backbone/resnet_vd.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -272,7 +272,7 @@ def __init__(self,
272272
block] if dilation_dict and block in dilation_dict else 1
273273

274274
# Actually block here is 'stage', and i is 'block' in 'stage'
275-
# At the stage 4, expand the the dilation_rate if given multi_grid
275+
# At the stage 4, expand the dilation_rate if given multi_grid
276276
if block == 3:
277277
dilation_rate = dilation_rate * multi_grid[i]
278278
###############################################################################

configs/pssl/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ Here we show the configuration files of two lightweight models, [STDC2](https://
2424

2525
There is no need to do this step if [STDC2](https://paddleseg.bj.bcebos.com/dygraph/pssl/stdc2_pssl_pretrained/model.pdparams) and [PPLite-Seg-B](https://paddleseg.bj.bcebos.com/dygraph/pssl/pp_liteseg_stdc2_pssl_pretrained/model.pdparams) are used.
2626

27-
Otherwise, checking the following steps for preparing the enviroment and the datasets:
27+
Otherwise, checking the following steps for preparing the environment and the datasets:
2828

2929
1. Make sure that PaddleSeg is well installed. See the [installation guide](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/docs/install.md) for details.
3030

contrib/DomainAdaptation/models/gscnn.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -154,7 +154,7 @@ def forward(self, x, feat_list, s_input):
154154
input_shape[2:],
155155
mode='bilinear',
156156
align_corners=self.align_corners)
157-
cs = F.sigmoid(cs) # Ouput of shape stream
157+
cs = F.sigmoid(cs) # Output of shape stream
158158

159159
return [cs, ]
160160

contrib/LaneSeg/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -217,7 +217,7 @@ python export.py --help
217217
python deploy/python/infer.py \
218218
--config output/export/deploy.yaml \
219219
--image_path data/test_images/3.jpg \
220-
--save_dir ouput/results
220+
--save_dir output/results
221221
```
222222

223223
Run the following command to view more parameters.

contrib/LaneSeg/README_CN.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -220,7 +220,7 @@ python export.py --help
220220
python deploy/python/infer.py \
221221
--config output/export/deploy.yaml \
222222
--image_path data/test_images/3.jpg \
223-
--save_dir ouput/results
223+
--save_dir output/results
224224
```
225225

226226
更多参数信息请运行如下命令进行查看:

contrib/MedicalSeg/medicalseg/utils/utils.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ def get_image_list(image_path, valid_suffix=None, filter_key=None):
149149
Args:
150150
image_path(str): the image or image folder where you want to get a image list from.
151151
valid_suffix(tuple): Contain only the suffix you want to include.
152-
filter_key(dict): the key(ignore case) and whether you want to include it. e.g.:{"segmentation": True} will futher filter the imagename with segmentation in it.
152+
filter_key(dict): the key(ignore case) and whether you want to include it. e.g.:{"segmentation": True} will further filter the imagename with segmentation in it.
153153
154154
"""
155155
if valid_suffix is None:
@@ -213,18 +213,18 @@ def save_array(save_path, save_content, form, image_infor):
213213
"""
214214
if not isinstance(save_content, dict):
215215
raise TypeError(
216-
'The save_content need to be dict which the key is the save name and the value is the numpy array to be saved, but recieved {}'
216+
'The save_content need to be dict which the key is the save name and the value is the numpy array to be saved, but received {}'
217217
.format(type(save_content)))
218218

219219
for (key, val) in save_content.items():
220220
if not isinstance(val, np.ndarray):
221-
raise TypeError('We only save numpy array, but recieved {}'.format(
221+
raise TypeError('We only save numpy array, but received {}'.format(
222222
type(val)))
223223
if len(val.shape) > 3:
224224
save_content[key] = np.squeeze(val)
225225

226226
if not isinstance(form, Iterable):
227-
raise TypeError('The form need be iterable, but recieved {}'.format(
227+
raise TypeError('The form need be iterable, but received {}'.format(
228228
type(form)))
229229

230230
if save_path is not None:

contrib/MedicalSeg/nnunet/datasets/dataset.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -343,7 +343,7 @@ def setup_DA_params(self):
343343
if self.stage == 1 and self.cascade:
344344
self.data_aug_params["num_cached_per_thread"] = 2
345345

346-
self.data_aug_params['move_last_seg_chanel_to_data'] = True
346+
self.data_aug_params['move_last_seg_channel_to_data'] = True
347347
self.data_aug_params['cascade_do_cascade_augmentations'] = True
348348

349349
self.data_aug_params['cascade_random_binary_transform_p'] = 0.4

contrib/MedicalSeg/nnunet/transforms/augmentation.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -150,8 +150,8 @@ def get_moreDA_augmentation(dataloader_train,
150150

151151
tr_transforms.append(RemoveLabelTransform(-1, 0))
152152

153-
if params.get("move_last_seg_chanel_to_data") is not None and params.get(
154-
"move_last_seg_chanel_to_data"):
153+
if params.get("move_last_seg_channel_to_data") is not None and params.get(
154+
"move_last_seg_channel_to_data"):
155155
tr_transforms.append(
156156
MoveSegAsOneHotToData(
157157
1, params.get("all_segmentation_labels"), 'seg', 'data'))
@@ -224,8 +224,8 @@ def get_moreDA_augmentation(dataloader_train,
224224
val_transforms.append(
225225
SegChannelSelectionTransform(params.get("selected_seg_channels")))
226226

227-
if params.get("move_last_seg_chanel_to_data") is not None and params.get(
228-
"move_last_seg_chanel_to_data"):
227+
if params.get("move_last_seg_channel_to_data") is not None and params.get(
228+
"move_last_seg_channel_to_data"):
229229
val_transforms.append(
230230
MoveSegAsOneHotToData(
231231
1, params.get("all_segmentation_labels"), 'seg', 'data'))

0 commit comments

Comments
 (0)