Skip to content

Commit 007b27d

Browse files
committed
Update Docs
1 parent 2d707c5 commit 007b27d

File tree

2 files changed

+4
-2
lines changed

2 files changed

+4
-2
lines changed

README.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ The goal of Paddle Serving is to provide high-performance, flexible and easy-to-
2929

3030
- Integrate high-performance server-side inference engine paddle Inference and mobile-side engine paddle Lite. Models of other machine learning platforms (Caffe/TensorFlow/ONNX/PyTorch) can be migrated to paddle through [x2paddle](https://github.com/PaddlePaddle/X2Paddle).
3131
- There are two frameworks, namely high-performance C++ Serving and high-easy-to-use Python pipeline.The C++ Serving is based on the bRPC network framework to create a high-throughput, low-latency inference service, and its performance indicators are ahead of competing products. The Python pipeline is based on the gRPC/gRPC-Gateway network framework and the Python language to build a highly easy-to-use and high-throughput inference service. How to choose which one please see [Techinical Selection](doc/Serving_Design_EN.md)
32-
- Support multiple [protocols]() such as HTTP, gRPC, bRPC, and provide C++, Python, Java language SDK.
32+
- Support multiple [protocols](doc/C++_Serving/Inference_Protocols_CN.md ) such as HTTP, gRPC, bRPC, and provide C++, Python, Java language SDK.
3333
- Design and implement a high-performance inference service framework for asynchronous pipelines based on directed acyclic graph (DAG), with features such as multi-model combination, asynchronous scheduling, concurrent inference, dynamic batch, multi-card multi-stream inference, etc.- Adapt to a variety of commonly used computing hardwares, such as x86 (Intel) CPU, ARM CPU, Nvidia GPU, Kunlun XPU, etc.; Integrate acceleration libraries of Intel MKLDNN and Nvidia TensorRT, and low-precision and quantitative inference.
3434
- Provide a model security deployment solution, including encryption model deployment, and authentication mechanism, HTTPs security gateway, which is used in practice.
3535
- Support cloud deployment, provide a deployment case of Baidu Cloud Intelligent Cloud kubernetes cluster.
@@ -72,6 +72,7 @@ The first step is to call the model save interface to generate a model parameter
7272
- [Infer on quantizative models](doc/Low_Precision_CN.md)
7373
- [Data format of classic models](doc/Process_Data_CN.md)
7474
- [C++ Serving](doc/C++_Serving/Introduction_EN.md)
75+
- [protocols](doc/C++_Serving/Inference_Protocols_CN.md)
7576
- [Hot loading models](doc/C++_Serving/Hot_Loading_EN.md)
7677
- [A/B Test](doc/C++_Serving/ABTest_EN.md)
7778
- [Encryption](doc/C++_Serving/Encryption_EN.md)

README_CN.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ Paddle Serving依托深度学习框架PaddlePaddle旨在帮助深度学习开发
2828

2929
- 集成高性能服务端推理引擎paddle Inference和移动端引擎paddle Lite,其他机器学习平台(Caffe/TensorFlow/ONNX/PyTorch)可通过[x2paddle](https://github.com/PaddlePaddle/X2Paddle)工具迁移模型
3030
- 具有高性能C++和高易用Python 2套框架。C++框架基于高性能bRPC网络框架打造高吞吐、低延迟的推理服务,性能领先竞品。Python框架基于gRPC/gRPC-Gateway网络框架和Python语言构建高易用、高吞吐推理服务框架。技术选型参考[技术选型](doc/Serving_Design_CN.md)
31-
- 支持HTTP、gRPC、bRPC等多种[协议](链接protocol文档);提供C++、Python、Java语言SDK
31+
- 支持HTTP、gRPC、bRPC等多种[协议](doc/C++_Serving/Inference_Protocols_CN.md);提供C++、Python、Java语言SDK
3232
- 设计并实现基于有向无环图(DAG)的异步流水线高性能推理框架,具有多模型组合、异步调度、并发推理、动态批量、多卡多流推理等特性
3333
- 适配x86(Intel) CPU、ARM CPU、Nvidia GPU、昆仑XPU等多种硬件;集成Intel MKLDNN、Nvidia TensorRT加速库,以及低精度和量化推理
3434
- 提供一套模型安全部署解决方案,包括加密模型部署、鉴权校验、HTTPs安全网关,并在实际项目中应用
@@ -70,6 +70,7 @@ Paddle Serving依托深度学习框架PaddlePaddle旨在帮助深度学习开发
7070
- [低精度推理](doc/Low_Precision_CN.md)
7171
- [常见模型数据处理](doc/Process_data_CN.md)
7272
- [C++ Serving简介](doc/C++_Serving/Introduction_CN.md)
73+
- [协议](doc/C++_Serving/Inference_Protocols_CN.md)
7374
- [模型热加载](doc/C++_Serving/Hot_Loading_CN.md)
7475
- [A/B Test](doc/C++_Serving/ABTest_CN.md)
7576
- [加密模型推理服务](doc/C++_Serving/Encryption_CN.md)

0 commit comments

Comments
 (0)