|
| 1 | +import copy |
| 2 | +import numpy as np |
| 3 | +from collections import OrderedDict |
| 4 | +from x2paddle.core.program import PaddleLayer |
| 5 | +from x2paddle.core.util import * |
| 6 | + |
| 7 | + |
| 8 | +class PReLUOpt: |
| 9 | + def __init__(self): |
| 10 | + pass |
| 11 | + |
| 12 | + def run(self, graph): |
| 13 | + print("Optimize: PReLUOpt...") |
| 14 | + layers = copy.deepcopy(graph.layers) |
| 15 | + for layer_id, layer in layers.items(): |
| 16 | + if layer.kernel != "fluid.layers.elementwise_add": |
| 17 | + continue |
| 18 | + axis = layer.attrs.get('axis', -1) |
| 19 | + if axis != -1 and axis != 3: |
| 20 | + continue |
| 21 | + |
| 22 | + input_ids0 = graph.edges_in[layer_id] |
| 23 | + relu_layer0 = graph.layers[input_ids0[0]] |
| 24 | + mul_layer0 = graph.layers[input_ids0[1]] |
| 25 | + |
| 26 | + if relu_layer0.kernel != "fluid.layers.relu": |
| 27 | + continue |
| 28 | + if mul_layer0.kernel != "fluid.layers.elementwise_mul": |
| 29 | + continue |
| 30 | + |
| 31 | + axis = mul_layer0.attrs.get('axis', -1) |
| 32 | + if axis != -1 and axis != 3: |
| 33 | + continue |
| 34 | + if len(graph.edges_out.get(input_ids0[0], [])) != 1: |
| 35 | + continue |
| 36 | + if len(graph.edges_out.get(input_ids0[1], [])) != 1: |
| 37 | + continue |
| 38 | + |
| 39 | + input_ids1_0 = graph.edges_in[input_ids0[0]] |
| 40 | + input_ids1_1 = graph.edges_in[input_ids0[1]] |
| 41 | + fill_layer = graph.layers[input_ids1_1[1]] |
| 42 | + mul_layer1 = graph.layers[input_ids1_1[0]] |
| 43 | + if fill_layer.kernel != "fluid.layers.fill_constant": |
| 44 | + continue |
| 45 | + if mul_layer1.kernel != "fluid.layers.elementwise_mul": |
| 46 | + continue |
| 47 | + axis = mul_layer1.attrs.get('axis', -1) |
| 48 | + if axis != -1 and axis != 0: |
| 49 | + continue |
| 50 | + if len(graph.edges_out.get(input_ids1_1[1], [])) != 1: |
| 51 | + continue |
| 52 | + if len(graph.edges_out.get(input_ids1_0[0], [])) != 3: |
| 53 | + continue |
| 54 | + |
| 55 | + input_ids2 = graph.edges_in[input_ids1_1[0]] |
| 56 | + alpha = graph.layers[input_ids2[0]] |
| 57 | + sub_layer = graph.layers[input_ids2[1]] |
| 58 | + if alpha.kernel != "fluid.layers.create_parameter": |
| 59 | + continue |
| 60 | + if sub_layer.kernel != "fluid.layers.elementwise_sub": |
| 61 | + continue |
| 62 | + axis = sub_layer.attrs.get('axis', -1) |
| 63 | + if axis != -1 and axis != 3: |
| 64 | + continue |
| 65 | + if len(graph.edges_out.get(input_ids2[0], [])) != 1: |
| 66 | + continue |
| 67 | + if len(graph.edges_out.get(input_ids2[1], [])) != 1: |
| 68 | + continue |
| 69 | + if alpha.outputs[0] not in graph.parameters: |
| 70 | + continue |
| 71 | + |
| 72 | + input_ids3 = graph.edges_in[input_ids2[1]] |
| 73 | + add_layer = graph.layers[input_ids3[0]] |
| 74 | + abs_layer = graph.layers[input_ids3[1]] |
| 75 | + if abs_layer.kernel != "fluid.layers.abs": |
| 76 | + continue |
| 77 | + if len(graph.edges_out.get(input_ids3[1], [])) != 1: |
| 78 | + continue |
| 79 | + |
| 80 | + |
| 81 | + ids = set([ |
| 82 | + layer.id, relu_layer0.id, mul_layer0.id, fill_layer.id, mul_layer1.id, alpha.id, |
| 83 | + sub_layer.id, abs_layer.id]) |
| 84 | + |
| 85 | + for id in ids: |
| 86 | + del graph.layers[id] |
| 87 | + if id in graph.edges_in: |
| 88 | + del graph.edges_in[id] |
| 89 | + if id in graph.edges_out: |
| 90 | + del graph.edges_out[id] |
| 91 | + |
| 92 | + copy_layers = copy.deepcopy(graph.layers) |
| 93 | + graph.layers = OrderedDict() |
| 94 | + for k, v in copy_layers.items(): |
| 95 | + if k != add_layer.id: |
| 96 | + graph.layers[k] = v |
| 97 | + continue |
| 98 | + graph.layers[k] = v |
| 99 | + transpose0 = PaddleLayer( |
| 100 | + id='{}_1'.format(k), |
| 101 | + kernel="fluid.layers.transpose", |
| 102 | + inputs={"x": v.outputs[0]}, |
| 103 | + outputs=["transpose_for_prelu"], |
| 104 | + perm=[0, 3, 1, 2]) |
| 105 | + prelu = PaddleLayer( |
| 106 | + id='{}_2'.format(k), |
| 107 | + kernel="fluid.layers.prelu", |
| 108 | + inputs={"x": "transpose_for_prelu"}, |
| 109 | + outputs=layer.outputs, |
| 110 | + mode=string("channel"), |
| 111 | + param_attr="'{}'".format(alpha.outputs[0])) |
| 112 | + transpose1 = PaddleLayer( |
| 113 | + id=layer_id, |
| 114 | + kernel="fluid.layers.transpose", |
| 115 | + inputs={"x": layer.outputs[0]}, |
| 116 | + outputs=layer.outputs, |
| 117 | + perm=[0, 2, 3, 1]) |
| 118 | + graph.layers[transpose0.id] = transpose0 |
| 119 | + graph.layers[prelu.id] = prelu |
| 120 | + graph.layers[transpose1.id] = transpose1 |
| 121 | + graph.parameters[alpha.outputs[0]] = np.expand_dims(graph.parameters[alpha.outputs[0]], 0) |
| 122 | + graph.build() |
| 123 | + |
0 commit comments