|
1 |
| -## 简介 |
| 1 | +# 一、简介 |
2 | 2 |
|
3 | 3 | 本项目是深度学习赋能材料获取一站式平台,内容涵盖深度学习教程、理论知识点解读、产业实践案例、常用Tricks和前沿论文复现等。从理论到实践,从科研到产业应用,各类学习材料一应俱全,旨在帮助开发者高效学习和掌握深度学习知识,快速成为AI跨界人才。
|
4 | 4 |
|
5 |
| -- **内容全面** |
| 5 | +* **内容全面**:无论您是深度学习初学者,还是资深用户,都可以在本项目中快速获取到需要的学习材料。 |
6 | 6 |
|
7 |
| -无论您是深度学习初学者,还是资深用户,都可以在本项目中快速获取到需要的学习材料。 |
| 7 | +* **形式丰富** :赋能材料形式多样,包括可在线运行的notebook、视频、书籍、B站直播等,满足您随时随地学习的需求。 |
8 | 8 |
|
9 |
| -- **形式丰富** |
| 9 | +* **实践代码实时更新**:本项目中涉及到的代码均匹配Paddle最新发布版本,开发者可以实时学习最新的深度学习任务实现方案。 |
10 | 10 |
|
11 |
| -赋能材料形式多样,包括可在线运行的notebook、视频、书籍、B站直播等,满足您随时随地学习的需求。 |
12 |
| - |
13 |
| -- **实践代码实时更新** |
14 |
| - |
15 |
| -本项目中涉及到的代码均匹配Paddle最新发布版本,开发者可以实时学习最新的深度学习任务实现方案。 |
16 |
| - |
17 |
| -- **前沿知识分享** |
18 |
| - |
19 |
| -定期分享顶会最新论文解读和代码复现,开发者可以实时掌握最新的深度学习算法。 |
| 11 | +* **前沿知识分享** :定期分享顶会最新论文解读和代码复现,开发者可以实时掌握最新的深度学习算法。 |
20 | 12 |
|
21 | 13 |
|
22 | 14 |
|
23 | 15 | ## 最新动态
|
24 | 16 |
|
25 | 17 | 2021年5月14日-5月20日,B站《零基础实践深度学习》7日打卡课,扫描下方二维码快速入群,了解最新的课程信息。
|
26 | 18 |
|
27 |
| -<center><img src="https://github.com/ZhangHandi/images-for-paddledocs/blob/main/images/readme/qr_code.png?raw=true"/></center><br></br> |
| 19 | +<center><img src="https://github.com/ZhangHandi/images-for-paddledocs/blob/main/images/readme/qr_code.png?raw=true"/></center> |
| 20 | +<br></br> |
28 | 21 |
|
29 | 22 |
|
30 | 23 |
|
31 |
| -## 内容概览 |
| 24 | +# 二、内容概览 |
32 | 25 |
|
33 |
| -* ### 零基础实践深度学习 |
| 26 | +## 1. 零基础实践深度学习 |
34 | 27 |
|
35 |
| - - **[AI Studio在线课程:《零基础实践深度学习》](https://aistudio.baidu.com/aistudio/course/introduce/1297: |
| 28 | + - **[AI Studio在线课程:《零基础实践深度学习》](https://aistudio.baidu.com/aistudio/course/introduce/1297 |
36 | 29 | )**:理论和代码结合、实践与平台结合,包含20小时视频课程,由百度杰出架构师、飞桨产品负责人和资深研发人员共同打造。
|
37 | 30 |
|
38 | 31 | <center><img src="https://github.com/ZhangHandi/images-for-paddledocs/blob/main/images/readme/aistudio.png?raw=true"/></center><br></br>
|
39 | 32 |
|
40 |
| - |
41 |
| - |
42 |
| - |
43 | 33 |
|
44 | 34 | - **《零基础实践深度学习》书籍**:由清华出版社2020年底发行,京东/当当等电商均有销售。
|
45 | 35 |
|
46 | 36 | <center><img src="https://github.com/ZhangHandi/images-for-paddledocs/blob/main/images/readme/book.png?raw=true"/></center><br></br>
|
47 | 37 |
|
48 | 38 |
|
49 | 39 |
|
50 |
| -* ### 深度学习100问 |
51 |
| - |
52 |
| - 已完成的内容,请补充目录和链接 |
53 |
| - |
| 40 | +## 2. [深度学习1000问](https://paddlepedia.readthedocs.io/en/latest/index.html) |
| 41 | + |
| 42 | +* [深度学习](https://paddlepedia.readthedocs.io/en/latest/tutorials/deep_learning/index.html#) |
| 43 | + * [优化策略](https://paddlepedia.readthedocs.io/en/latest/tutorials/deep_learning/optimizers/index.html)(包括什么是优化器,GD,SGD,BGD,鞍点,Momentum,NAG,Adagrad,AdaDelta,RMSProp,Adam,AdaMax,Nadam,AMSGrad,AdaBound,AdamW,RAdam,Lookahead等18个知识点) |
| 44 | + * [激活函数](https://paddlepedia.readthedocs.io/en/latest/tutorials/deep_learning/loss_functions/index.html) |
| 45 | + * [常用损失函数](https://paddlepedia.readthedocs.io/en/latest/tutorials/deep_learning/loss_functions/index.html) |
| 46 | + * [模型调优](https://paddlepedia.readthedocs.io/en/latest/tutorials/deep_learning/model_tuning/index.html#) |
| 47 | + * [正则化](https://paddlepedia.readthedocs.io/en/latest/tutorials/deep_learning/model_tuning/regularization/index.html)(包括什么是正则化?正则化如何帮助减少过度拟合?数据增强,L1 L2正则化介绍,L1和L2的贝叶斯推断分析法,Dropout,DropConnect,早停法等8个知识点) |
| 48 | +* [计算机视觉](https://paddlepedia.readthedocs.io/en/latest/tutorials/computer_vision/index.html) |
| 49 | + * [卷积算子](https://paddlepedia.readthedocs.io/en/latest/tutorials/computer_vision/convolution_operator/index.html) |
| 50 | + * [图像增广](https://paddlepedia.readthedocs.io/en/latest/tutorials/computer_vision/image_augmentation/index.html) |
| 51 | + * [卷积神经网络](https://paddlepedia.readthedocs.io/en/latest/tutorials/computer_vision/convolution_network/index.html) |
| 52 | + * [图像分类](https://paddlepedia.readthedocs.io/en/latest/tutorials/computer_vision/classification/index.html) |
| 53 | + * [目标检测](https://paddlepedia.readthedocs.io/en/latest/tutorials/computer_vision/object_detection/index.html) |
| 54 | +* [自然语言处理](https://paddlepedia.readthedocs.io/en/latest/tutorials/natural_language_processing/index.html) |
| 55 | + * [词表示](https://paddlepedia.readthedocs.io/en/latest/tutorials/natural_language_processing/word_representation/index.html) |
| 56 | + * [序列模型](https://paddlepedia.readthedocs.io/en/latest/tutorials/natural_language_processing/sequence_model/index.html)(包括GRU,LSTM,RNN等3个知识点) |
| 57 | + * [命名实体识别](https://paddlepedia.readthedocs.io/en/latest/tutorials/natural_language_processing/ner/index.html) |
| 58 | +* [预训练模型](https://paddlepedia.readthedocs.io/en/latest/tutorials/pretrain_model/index.html) |
| 59 | + * [预训练模型是什么](https://paddlepedia.readthedocs.io/en/latest/tutorials/pretrain_model/pretrain_model_description.html) |
| 60 | + * [预训练分词Subword](https://paddlepedia.readthedocs.io/en/latest/tutorials/pretrain_model/subword.html)(包括BPE,WordPiece,ULM等3个知识点) |
| 61 | + * [Transformer](https://paddlepedia.readthedocs.io/en/latest/tutorials/pretrain_model/transformer.html)(包括self-attention,multi-head Attention,Position Encoding, Transformer Encoder, Transformer Decoder等5个知识点) |
| 62 | + * [BERT](https://paddlepedia.readthedocs.io/en/latest/tutorials/pretrain_model/bert.html)(包括BERT预训练任务,BERT微调等2个知识点) |
| 63 | + * [ERNIE](https://paddlepedia.readthedocs.io/en/latest/tutorials/pretrain_model/erine.html) |
| 64 | +* [推荐系统](https://paddlepedia.readthedocs.io/en/latest/tutorials/recommendation_system/index.html) |
| 65 | + * [推荐系统基础](https://paddlepedia.readthedocs.io/en/latest/tutorials/recommendation_system/recommender_system.html)(包括协同过滤推荐,内容过滤推荐,组合推荐,用户画像,召回,排序等6个知识点) |
| 66 | + * [DSSM模型](https://paddlepedia.readthedocs.io/en/latest/tutorials/recommendation_system/dssm.html)(包括DSSM模型等1个知识点) |
| 67 | +* [对抗神经网络](https://paddlepedia.readthedocs.io/en/latest/tutorials/generative_adversarial_network/index.html) |
| 68 | + * [encoder-decoder](https://paddlepedia.readthedocs.io/en/latest/tutorials/generative_adversarial_network/encoder_decoder/index.html) |
| 69 | + * [GAN基本概念](https://paddlepedia.readthedocs.io/en/latest/tutorials/generative_adversarial_network/basic_concept/index.html) |
| 70 | + * [GAN评价指标](https://paddlepedia.readthedocs.io/en/latest/tutorials/generative_adversarial_network/gan_metric/index.html) |
| 71 | + * [GAN应用](https://paddlepedia.readthedocs.io/en/latest/tutorials/generative_adversarial_network/gan_applications/index.html) |
| 72 | +* [强化学习](https://paddlepedia.readthedocs.io/en/latest/tutorials/reinforcement_learning/index.html) |
| 73 | + * [强化学习基础知识点](https://paddlepedia.readthedocs.io/en/latest/tutorials/reinforcement_learning/basic_information.html) |
| 74 | + * [马尔可夫决策过程](https://paddlepedia.readthedocs.io/en/latest/tutorials/reinforcement_learning/markov_decision_process.html) |
| 75 | + * [策略梯度定理](https://paddlepedia.readthedocs.io/en/latest/tutorials/reinforcement_learning/policy_gradient.html) |
| 76 | + * [蒙特卡洛策略梯度定理](https://paddlepedia.readthedocs.io/en/latest/tutorials/reinforcement_learning/policy_gradient.html) |
| 77 | + * [REINFORCE算法](https://paddlepedia.readthedocs.io/en/latest/tutorials/reinforcement_learning/policy_gradient.html#reinforce) |
| 78 | + * [SARSA](https://paddlepedia.readthedocs.io/en/latest/tutorials/reinforcement_learning/Sarsa.html)(包括SARSA的公式,优缺点等2个知识点) |
| 79 | + * [Q-Learning](https://paddlepedia.readthedocs.io/en/latest/tutorials/reinforcement_learning/Q-learning.html)(包括Q-Learning的公式,优缺点等2个知识点) |
| 80 | + * [DQN](https://paddlepedia.readthedocs.io/en/latest/tutorials/reinforcement_learning/DQN.html#) |
54 | 81 |
|
| 82 | +详细信息请参阅[Paddle知识点文档平台](https://paddlepedia.readthedocs.io/en/latest/index.html) |
| 83 | + |
55 | 84 |
|
56 |
| -* ### 产业实践深度学习(开发中) |
| 85 | +## 3. 产业实践深度学习(开发中) |
57 | 86 |
|
58 | 87 |
|
59 | 88 |
|
60 |
| -## 技术交流 |
| 89 | +# 三、技术交流 |
61 | 90 |
|
62 | 91 | 非常感谢您使用本项目。您在使用过程中有任何建议或意见,可以在 **[Issue](https://github.com/PaddlePaddle/tutorials/issues)** 上反馈给我们,也可以通过扫描下方的二维码联系我们,飞桨的开发人员非常高兴能够帮助到您,并与您进行更深入的交流和技术探讨。
|
63 | 92 |
|
64 |
| -信息。 |
65 |
| - |
66 | 93 | <center><img src="https://github.com/ZhangHandi/images-for-paddledocs/blob/main/images/readme/qr_code.png?raw=true"/></center><br></br>
|
67 | 94 |
|
68 | 95 |
|
69 | 96 |
|
70 |
| -## 许可证书 |
| 97 | +# 四、许可证书 |
71 | 98 |
|
72 | 99 | 本项目的发布受[Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0.txt)许可认证。
|
73 | 100 |
|
74 | 101 |
|
75 | 102 |
|
76 |
| -## 贡献内容 |
| 103 | +# 五、贡献内容 |
77 | 104 |
|
78 | 105 | 本项目的不断成熟离不开各位开发者的贡献,如果您对深度学习知识分享感兴趣,非常欢迎您能贡献给我们,让更多的开发者受益。
|
79 | 106 |
|
0 commit comments