Skip to content
This repository was archived by the owner on Jan 24, 2024. It is now read-only.

Commit 64c82c5

Browse files
authored
Merge pull request #652 from tink2123/fix_download_link
modified the UCI_housing_data download link
2 parents 3e1385b + 51b8ef2 commit 64c82c5

File tree

4 files changed

+8
-8
lines changed

4 files changed

+8
-8
lines changed

01.fit_a_line/README.cn.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ $$y_i = \omega_1x_{i1} + \omega_2x_{i2} + \ldots + \omega_dx_{id} + b, i=1,\ldo
1313
初看起来,这个假设实在过于简单了,变量间的真实关系很难是线性的。但由于线性回归模型有形式简单和易于建模分析的优点,它在实际问题中得到了大量的应用。很多经典的统计学习、机器学习书籍\[[2,3,4](#参考文献)\]也选择对线性模型独立成章重点讲解。
1414

1515
## 效果展示
16-
我们使用从[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,每个点的横坐标表示同一类房屋真实价格的中位数,纵坐标表示线性回归模型根据特征预测的结果,当二者值完全相等的时候就会落在虚线上。所以模型预测得越准确,则点离虚线越近。
16+
我们使用从[UCI Housing Data Set](http://paddlemodels.bj.bcebos.com/uci_housing/housing.data)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,每个点的横坐标表示同一类房屋真实价格的中位数,纵坐标表示线性回归模型根据特征预测的结果,当二者值完全相等的时候就会落在虚线上。所以模型预测得越准确,则点离虚线越近。
1717
<p align="center">
1818
<img src = "https://github.com/PaddlePaddle/book/blob/develop/01.fit_a_line/image/predictions.png?raw=true" width=400><br/>
1919
图1. 预测值 V.S. 真实值
@@ -108,7 +108,7 @@ import sys
108108
from __future__ import print_function
109109
```
110110

111-
我们通过uci_housing模块引入了数据集合[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)
111+
我们通过uci_housing模块引入了数据集合[UCI Housing Data Set](http://paddlemodels.bj.bcebos.com/uci_housing/housing.data)
112112

113113
其中,在uci_housing模块中封装了:
114114

01.fit_a_line/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ $$y_i = \omega_1x_{i,1} + \omega_2x_{i,2} + \ldots + \omega_dx_{i,d} + b, i=1,\
1717
where $\vec{\omega}$ and $b$ are the model parameters we want to estimate. Once they are learned, we will be able to predict the price of a home, given the attributes associated with it. We call this model **Linear Regression**. In other words, we want to regress a value against several values linearly. In practice, a linear model is often too simplistic to capture the real relationships between the variables. Yet, because Linear Regression is easy to train and analyze, it has been applied to a large number of real problems. As a result, it is an important topic in many classic Statistical Learning and Machine Learning textbooks \[[2,3,4](#References)\].
1818

1919
## Results Demonstration
20-
We first show the result of our model. The dataset [UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing) is used to train a linear model to predict the home prices in Boston. The figure below shows the predictions the model makes for some home prices. The $X$-axis represents the median value of the prices of similar homes within a bin, while the $Y$-axis represents the home value our linear model predicts. The dotted line represents points where $X=Y$. When reading the diagram, the closer the point is to the dotted line, better the model's prediction.
20+
We first show the result of our model. The dataset [UCI Housing Data Set](http://paddlemodels.bj.bcebos.com/uci_housing/housing.data) is used to train a linear model to predict the home prices in Boston. The figure below shows the predictions the model makes for some home prices. The $X$-axis represents the median value of the prices of similar homes within a bin, while the $Y$-axis represents the home value our linear model predicts. The dotted line represents points where $X=Y$. When reading the diagram, the closer the point is to the dotted line, better the model's prediction.
2121
<p align="center">
2222
<img src = "image/predictions_en.png" width=400><br/>
2323
Figure 1. Predicted Value V.S. Actual Value
@@ -127,7 +127,7 @@ except ImportError:
127127

128128
```
129129

130-
We encapsulated the [UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing) in our Python module `uci_housing`. This module can
130+
We encapsulated the [UCI Housing Data Set](http://paddlemodels.bj.bcebos.com/uci_housing/housing.data) in our Python module `uci_housing`. This module can
131131

132132
1. download the dataset to `~/.cache/paddle/dataset/uci_housing/housing.data`, if you haven't yet, and
133133
2. [preprocess](#preprocessing) the dataset.

01.fit_a_line/index.cn.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@
5555
初看起来,这个假设实在过于简单了,变量间的真实关系很难是线性的。但由于线性回归模型有形式简单和易于建模分析的优点,它在实际问题中得到了大量的应用。很多经典的统计学习、机器学习书籍\[[2,3,4](#参考文献)\]也选择对线性模型独立成章重点讲解。
5656

5757
## 效果展示
58-
我们使用从[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,每个点的横坐标表示同一类房屋真实价格的中位数,纵坐标表示线性回归模型根据特征预测的结果,当二者值完全相等的时候就会落在虚线上。所以模型预测得越准确,则点离虚线越近。
58+
我们使用从[UCI Housing Data Set](http://paddlemodels.bj.bcebos.com/uci_housing/housing.data)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,每个点的横坐标表示同一类房屋真实价格的中位数,纵坐标表示线性回归模型根据特征预测的结果,当二者值完全相等的时候就会落在虚线上。所以模型预测得越准确,则点离虚线越近。
5959
<p align="center">
6060
<img src = "https://github.com/PaddlePaddle/book/blob/develop/01.fit_a_line/image/predictions.png?raw=true" width=400><br/>
6161
图1. 预测值 V.S. 真实值
@@ -150,7 +150,7 @@
150150
from __future__ import print_function
151151
```
152152

153-
我们通过uci_housing模块引入了数据集合[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)
153+
我们通过uci_housing模块引入了数据集合[UCI Housing Data Set](http://paddlemodels.bj.bcebos.com/uci_housing/housing.data)
154154

155155
其中,在uci_housing模块中封装了:
156156

01.fit_a_line/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@
5959
where $\vec{\omega}$ and $b$ are the model parameters we want to estimate. Once they are learned, we will be able to predict the price of a home, given the attributes associated with it. We call this model **Linear Regression**. In other words, we want to regress a value against several values linearly. In practice, a linear model is often too simplistic to capture the real relationships between the variables. Yet, because Linear Regression is easy to train and analyze, it has been applied to a large number of real problems. As a result, it is an important topic in many classic Statistical Learning and Machine Learning textbooks \[[2,3,4](#References)\].
6060

6161
## Results Demonstration
62-
We first show the result of our model. The dataset [UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing) is used to train a linear model to predict the home prices in Boston. The figure below shows the predictions the model makes for some home prices. The $X$-axis represents the median value of the prices of similar homes within a bin, while the $Y$-axis represents the home value our linear model predicts. The dotted line represents points where $X=Y$. When reading the diagram, the closer the point is to the dotted line, better the model's prediction.
62+
We first show the result of our model. The dataset [UCI Housing Data Set](http://paddlemodels.bj.bcebos.com/uci_housing/housing.data) is used to train a linear model to predict the home prices in Boston. The figure below shows the predictions the model makes for some home prices. The $X$-axis represents the median value of the prices of similar homes within a bin, while the $Y$-axis represents the home value our linear model predicts. The dotted line represents points where $X=Y$. When reading the diagram, the closer the point is to the dotted line, better the model's prediction.
6363
<p align="center">
6464
<img src = "image/predictions_en.png" width=400><br/>
6565
Figure 1. Predicted Value V.S. Actual Value
@@ -169,7 +169,7 @@
169169

170170
```
171171

172-
We encapsulated the [UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing) in our Python module `uci_housing`. This module can
172+
We encapsulated the [UCI Housing Data Set](http://paddlemodels.bj.bcebos.com/uci_housing/housing.data) in our Python module `uci_housing`. This module can
173173

174174
1. download the dataset to `~/.cache/paddle/dataset/uci_housing/housing.data`, if you haven't yet, and
175175
2. [preprocess](#preprocessing) the dataset.

0 commit comments

Comments
 (0)