@@ -271,26 +271,28 @@ def infer(use_cuda, params_dirname):
271
271
# Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
272
272
# level of detail info, indicating that `data` consists of two sequences
273
273
# of length 3 and 2, respectively.
274
- user_id = fluid .create_lod_tensor ([[1L ]], [[1 ]], place )
274
+ user_id = fluid .create_lod_tensor ([[np . int64 ( 1 ) ]], [[1 ]], place )
275
275
276
276
assert feed_target_names [1 ] == "gender_id"
277
- gender_id = fluid .create_lod_tensor ([[1L ]], [[1 ]], place )
277
+ gender_id = fluid .create_lod_tensor ([[np . int64 ( 1 ) ]], [[1 ]], place )
278
278
279
279
assert feed_target_names [2 ] == "age_id"
280
- age_id = fluid .create_lod_tensor ([[0L ]], [[1 ]], place )
280
+ age_id = fluid .create_lod_tensor ([[np . int64 ( 0 ) ]], [[1 ]], place )
281
281
282
282
assert feed_target_names [3 ] == "job_id"
283
- job_id = fluid .create_lod_tensor ([[10L ]], [[1 ]], place )
283
+ job_id = fluid .create_lod_tensor ([[np . int64 ( 10 ) ]], [[1 ]], place )
284
284
285
285
assert feed_target_names [4 ] == "movie_id"
286
- movie_id = fluid .create_lod_tensor ([[783L ]], [[1 ]], place )
286
+ movie_id = fluid .create_lod_tensor ([[np . int64 ( 783 ) ]], [[1 ]], place )
287
287
288
288
assert feed_target_names [5 ] == "category_id"
289
- category_id = fluid .create_lod_tensor ([[10L , 8L , 9L ]], [[3 ]], place )
289
+ category_id = fluid .create_lod_tensor (
290
+ [np .array ([10 , 8 , 9 ], dtype = 'int64' )], [[3 ]], place )
290
291
291
292
assert feed_target_names [6 ] == "movie_title"
292
293
movie_title = fluid .create_lod_tensor (
293
- [[1069L , 4140L , 2923L , 710L , 988L ]], [[5 ]], place )
294
+ [np .array ([1069 , 4140 , 2923 , 710 , 988 ], dtype = 'int64' )], [[5 ]],
295
+ place )
294
296
295
297
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
296
298
# and results will contain a list of data corresponding to fetch_targets.
0 commit comments