Skip to content

Commit 2233ad9

Browse files
haowang101779990shanyi15
authored andcommitted
fix refer to Paddle/#16882 #16864 (#796)
1 parent 4087de2 commit 2233ad9

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

doc/fluid/api_cn/layers_cn.rst

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -12428,7 +12428,7 @@ multi_box_head
1242812428
.. code-block:: python
1242912429
1243012430
mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
12431-
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
12431+
inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
1243212432
image=images,
1243312433
num_classes=21,
1243412434
min_ratio=20,
@@ -12914,7 +12914,7 @@ yolo_box
1291412914
yolov3_loss
1291512915
-------------------------------
1291612916
12917-
.. py:function:: paddle.fluid.layers.yolov3_loss(x, gtbox, gtlabel, anchors, anchor_mask, class_num, ignore_thresh, downsample_ratio, gtscore=None, use_label_smooth=True, name=None)
12917+
.. py:function:: paddle.fluid.layers.yolov3_loss(x, gt_box, gt_label, anchors, anchor_mask, class_num, ignore_thresh, downsample_ratio, gt_score=None, use_label_smooth=True, name=None)
1291812918
1291912919
该运算通过给定的预测结果和真实框生成yolov3损失。
1292012920
@@ -12965,15 +12965,15 @@ yolov3_loss
1296512965
1296612966
参数:
1296712967
- **x** (Variable) – YOLOv3损失运算的输入张量,这是一个形状为[N,C,H,W]的四维张量。H和W应该相同,第二维(C)存储框的位置信息,以及每个anchor box的置信度得分和one-hot分类
12968-
- **gtbox** (Variable) – 真实框,应该是[N,B,4]的形状。第三维用来承载x、y、w、h,x、y、w、h应该是输入图像相对值。 N是batch size,B是图像中所含有的的最多的box数目
12969-
- **gtlabel** (Variable) – 真实框的类id,应该形为[N,B]。
12968+
- **gt_box** (Variable) – 真实框,应该是[N,B,4]的形状。第三维用来承载x、y、w、h,x、y、w、h应该是输入图像相对值。 N是batch size,B是图像中所含有的的最多的box数目
12969+
- **gt_label** (Variable) – 真实框的类id,应该形为[N,B]。
1297012970
- **anchors** (list|tuple) – 指定anchor框的宽度和高度,它们将逐对进行解析
1297112971
- **anchor_mask** (list|tuple) – 当前YOLOv3损失计算中使用的anchor的mask索引
1297212972
- **class_num** (int) – 要预测的类数
1297312973
- **ignore_thresh** (float) – 一定条件下忽略某框置信度损失的忽略阈值
1297412974
- **downsample_ratio** (int) – 从网络输入到YOLOv3 loss输入的下采样率,因此应为第一,第二和第三个YOLOv3损失运算设置32,16,8
1297512975
- **name** (string) – yolov3损失层的命名
12976-
- **gtscore** (Variable) - 真实框的混合得分,形为[N,B]。 默认None
12976+
- **gt_score** (Variable) - 真实框的混合得分,形为[N,B]。 默认None
1297712977
- **use_label_smooth** (bool- 是否使用平滑标签。 默认为True
1297812978
1297912979
@@ -12996,13 +12996,13 @@ yolov3_loss
1299612996
.. code-block:: python
1299712997
1299812998
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
12999-
gtbox = fluid.layers.data(name='gtbox', shape=[6, 4], dtype='float32')
13000-
gtlabel = fluid.layers.data(name='gtlabel', shape=[6], dtype='int32')
13001-
gtscore = fluid.layers.data(name='gtscore', shape=[6], dtype='float32')
12999+
gt_box = fluid.layers.data(name='gtbox', shape=[6, 4], dtype='float32')
13000+
gt_label = fluid.layers.data(name='gtlabel', shape=[6], dtype='int32')
13001+
gt_score = fluid.layers.data(name='gtscore', shape=[6], dtype='float32')
1300213002
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
1300313003
anchor_mask = [0, 1, 2]
13004-
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, gtlabel=gtlabel,
13005-
gtscore=gtscore, anchors=anchors,
13004+
loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
13005+
gt_score=gt_score, anchors=anchors,
1300613006
anchor_mask=anchor_mask, class_num=80,
1300713007
ignore_thresh=0.7, downsample_ratio=32)
1300813008

0 commit comments

Comments
 (0)