@@ -16,49 +16,15 @@ Accuracy
16
16
代码示例
17
17
:::::::::
18
18
19
- ** 独立使用示例: **
19
+ 独立使用示例
20
20
21
- .. code-block :: python
21
+ COPY-FROM: paddle.metric.Accuracy: code-standalone-example
22
22
23
- import numpy as np
24
- import paddle
25
- x = paddle.to_tensor(np.array([
26
- [0.1 , 0.2 , 0.3 , 0.4 ],
27
- [0.1 , 0.4 , 0.3 , 0.2 ],
28
- [0.1 , 0.2 , 0.4 , 0.3 ],
29
- [0.1 , 0.2 , 0.3 , 0.4 ]]))
30
- y = paddle.to_tensor(np.array([[0 ], [1 ], [2 ], [3 ]]))
31
- m = paddle.metric.Accuracy()
32
- correct = m.compute(x, y)
33
- m.update(correct)
34
- res = m.accumulate()
35
- print (res) # 0.75
36
-
37
-
38
- **在 Model API 中的示例 **
39
-
40
- .. code-block :: python
41
-
42
- import paddle
43
- from paddle.static import InputSpec
44
- import paddle.vision.transforms as T
45
- from paddle.vision.datasets import MNIST
46
-
47
- input = InputSpec([None , 1 , 28 , 28 ], ' float32' , ' image' )
48
- label = InputSpec([None , 1 ], ' int64' , ' label' )
49
- transform = T.Compose([T.Transpose(), T.Normalize([127.5 ], [127.5 ])])
50
- train_dataset = MNIST(mode = ' train' , transform = transform)
51
-
52
- model = paddle.Model(paddle.vision.models.LeNet(), input , label)
53
- optim = paddle.optimizer.Adam(
54
- learning_rate = 0.001 , parameters = model.parameters())
55
- model.prepare(
56
- optim,
57
- loss = paddle.nn.CrossEntropyLoss(),
58
- metrics = paddle.metric.Accuracy())
59
-
60
- model.fit(train_dataset, batch_size = 64 )
23
+ 代码示例 2
24
+ ::::::::::::
25
+ 在 Model API 中的示例
61
26
27
+ COPY-FROM: paddle.metric.Accuracy:code-model-api-example
62
28
63
29
compute(pred, label, *args)
64
30
:::::::::
0 commit comments