|
| 1 | +struct AdaptiveActivation{T} |
| 2 | + a::T |
| 3 | + n::T |
| 4 | +end |
| 5 | + |
| 6 | +Flux.@functor AdaptiveActivation |
| 7 | + |
| 8 | +(fn::AdaptiveActivation)(x) = (fn.n * fn.a) .* x # to be worked on (for weight tying) |
| 9 | + |
| 10 | + |
| 11 | +struct NonlinearActivation{T} |
| 12 | + σ::T |
| 13 | +end |
| 14 | + |
| 15 | +Flux.@functor NonlinearActivation |
| 16 | + |
| 17 | +(a::NonlinearActivation)(x) = (a.σ).(x) |
| 18 | + |
| 19 | + |
| 20 | +function AdaptiveActivationFeedForwardNetwork(N::Integer, in::Integer, out::Integer, σ = Identity, n::Integer; nn_param_init = glorot_uniform) |
| 21 | + # another parameter would be the type of adaptive fn to be used |
| 22 | + # N = no. of hidden layers |
| 23 | + |
| 24 | + a = 1/n # initial a scaled such that n*a=1 ? |
| 25 | + function slope_recovery_loss_func(phi, θ, p) |
| 26 | + # calculate the slope_recovery loss function here as a function of the θ parameters that are generated for this |
| 27 | + # network |
| 28 | + for i in 1:1:length(θ): |
| 29 | + # the loss |
| 30 | + """ |
| 31 | + if adaptive_fn_without_slope_recovery |
| 32 | + 0 |
| 33 | + elseif with_slope_recovery_layerwise |
| 34 | + ... |
| 35 | + elseif neuronwise |
| 36 | + ... |
| 37 | + else |
| 38 | + error |
| 39 | + """ |
| 40 | + |
| 41 | + return regularizer_loss |
| 42 | + end |
| 43 | + |
| 44 | + layer = Flux.Chain( |
| 45 | + Dense(in, out, σ=identity; bias=true, init=nn_param_init), |
| 46 | + AdaptiveActivation(n, a), |
| 47 | + NonlinearActivation(nonlinearity), |
| 48 | + ) # to be stacked for as many hidden layers specified (N) |
| 49 | + |
| 50 | + return (network=Flux.Chain(...), loss_func=slope_recovery_loss_func) |
| 51 | +end |
0 commit comments