|
| 1 | +# Intersections of closed intervals of rational numbers |
| 2 | + |
| 3 | +```agda |
| 4 | +module elementary-number-theory.intersections-closed-intervals-rational-numbers where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import elementary-number-theory.closed-intervals-rational-numbers |
| 11 | +open import elementary-number-theory.decidable-total-order-rational-numbers |
| 12 | +open import elementary-number-theory.poset-closed-intervals-rational-numbers |
| 13 | +
|
| 14 | +open import foundation.binary-relations |
| 15 | +open import foundation.identity-types |
| 16 | +open import foundation.intersections-subtypes |
| 17 | +open import foundation.universe-levels |
| 18 | +
|
| 19 | +open import order-theory.greatest-lower-bounds-posets |
| 20 | +open import order-theory.intersections-closed-intervals-total-orders |
| 21 | +``` |
| 22 | + |
| 23 | +</details> |
| 24 | + |
| 25 | +## Idea |
| 26 | + |
| 27 | +Two |
| 28 | +[closed intervals](elementary-number-theory.closed-intervals-rational-numbers.md) |
| 29 | +[a, b] and [c, d] of |
| 30 | +[rational numbers](elementary-number-theory.rational-numbers.md) |
| 31 | +{{#concept "intersect" Disambiguation="closed intervals of rational numbers"}} |
| 32 | +if `a ≤ d` and `c ≤ b`. |
| 33 | + |
| 34 | +If [a, b] and [c, d] intersect, their intersection is itself a closed interval. |
| 35 | + |
| 36 | +## Definition |
| 37 | + |
| 38 | +```agda |
| 39 | +intersect-prop-closed-interval-ℚ : Relation-Prop lzero closed-interval-ℚ |
| 40 | +intersect-prop-closed-interval-ℚ = |
| 41 | + intersect-prop-closed-interval-Total-Order ℚ-Total-Order |
| 42 | +
|
| 43 | +intersect-closed-interval-ℚ : Relation lzero closed-interval-ℚ |
| 44 | +intersect-closed-interval-ℚ = |
| 45 | + intersect-closed-interval-Total-Order ℚ-Total-Order |
| 46 | +``` |
| 47 | + |
| 48 | +## Properties |
| 49 | + |
| 50 | +### Intersection is reflexive |
| 51 | + |
| 52 | +```agda |
| 53 | +refl-intersect-closed-interval-ℚ : is-reflexive intersect-closed-interval-ℚ |
| 54 | +refl-intersect-closed-interval-ℚ = |
| 55 | + refl-intersect-closed-interval-Total-Order ℚ-Total-Order |
| 56 | +``` |
| 57 | + |
| 58 | +### If two intervals intersect, their intersection is a closed interval |
| 59 | + |
| 60 | +```agda |
| 61 | +intersection-closed-interval-ℚ : |
| 62 | + ([a,b] [c,d] : closed-interval-ℚ) → intersect-closed-interval-ℚ [a,b] [c,d] → |
| 63 | + closed-interval-ℚ |
| 64 | +intersection-closed-interval-ℚ = |
| 65 | + intersection-closed-interval-Total-Order ℚ-Total-Order |
| 66 | +
|
| 67 | +is-intersection-closed-interval-ℚ : |
| 68 | + ([a,b] [c,d] : closed-interval-ℚ) → |
| 69 | + (H : intersect-closed-interval-ℚ [a,b] [c,d]) → |
| 70 | + subtype-closed-interval-ℚ |
| 71 | + ( intersection-closed-interval-ℚ [a,b] [c,d] H) = |
| 72 | + intersection-subtype |
| 73 | + ( subtype-closed-interval-ℚ [a,b]) |
| 74 | + ( subtype-closed-interval-ℚ [c,d]) |
| 75 | +is-intersection-closed-interval-ℚ = |
| 76 | + is-intersection-closed-interval-Total-Order ℚ-Total-Order |
| 77 | +
|
| 78 | +intersect-closed-interval-intersect-subtype-ℚ : |
| 79 | + ([a,b] [c,d] : closed-interval-ℚ) → |
| 80 | + intersect-subtype |
| 81 | + ( subtype-closed-interval-ℚ [a,b]) |
| 82 | + ( subtype-closed-interval-ℚ [c,d]) → |
| 83 | + intersect-closed-interval-ℚ [a,b] [c,d] |
| 84 | +intersect-closed-interval-intersect-subtype-ℚ = |
| 85 | + intersect-closed-interval-intersect-subtype-Total-Order ℚ-Total-Order |
| 86 | +``` |
| 87 | + |
| 88 | +### If two closed intervals intersect, their intersection is their greatest lower bound |
| 89 | + |
| 90 | +```agda |
| 91 | +is-greatest-binary-lower-bound-intersection-closed-interval-ℚ : |
| 92 | + ([a,b] [c,d] : closed-interval-ℚ) → |
| 93 | + (H : intersect-closed-interval-ℚ [a,b] [c,d]) → |
| 94 | + is-greatest-binary-lower-bound-Poset |
| 95 | + ( poset-closed-interval-ℚ) |
| 96 | + ( [a,b]) |
| 97 | + ( [c,d]) |
| 98 | + ( intersection-closed-interval-ℚ [a,b] [c,d] H) |
| 99 | +is-greatest-binary-lower-bound-intersection-closed-interval-ℚ = |
| 100 | + is-greatest-binary-lower-bound-intersection-closed-interval-Total-Order |
| 101 | + ( ℚ-Total-Order) |
| 102 | +``` |
| 103 | + |
| 104 | +### If two closed intervals intersect, their intersection is contained in both |
| 105 | + |
| 106 | +```agda |
| 107 | +abstract |
| 108 | + leq-left-intersection-closed-interval-ℚ : |
| 109 | + ([a,b] [c,d] : closed-interval-ℚ) → |
| 110 | + (H : intersect-closed-interval-ℚ [a,b] [c,d]) → |
| 111 | + leq-closed-interval-ℚ (intersection-closed-interval-ℚ [a,b] [c,d] H) [a,b] |
| 112 | + leq-left-intersection-closed-interval-ℚ = |
| 113 | + leq-left-intersection-closed-interval-Total-Order ℚ-Total-Order |
| 114 | +
|
| 115 | + leq-right-intersection-closed-interval-ℚ : |
| 116 | + ([a,b] [c,d] : closed-interval-ℚ) → |
| 117 | + (H : intersect-closed-interval-ℚ [a,b] [c,d]) → |
| 118 | + leq-closed-interval-ℚ (intersection-closed-interval-ℚ [a,b] [c,d] H) [c,d] |
| 119 | + leq-right-intersection-closed-interval-ℚ = |
| 120 | + leq-right-intersection-closed-interval-Total-Order ℚ-Total-Order |
| 121 | +``` |
0 commit comments