You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/metric-spaces/approximations-metric-spaces.lagda.md
+165-1Lines changed: 165 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -10,15 +10,30 @@ module metric-spaces.approximations-metric-spaces where
10
10
open import elementary-number-theory.positive-rational-numbers
11
11
12
12
open import foundation.dependent-pair-types
13
+
open import foundation.existential-quantification
13
14
open import foundation.full-subtypes
15
+
open import foundation.function-types
16
+
open import foundation.images
17
+
open import foundation.images-subtypes
18
+
open import foundation.logical-equivalences
19
+
open import foundation.propositional-truncations
14
20
open import foundation.propositions
15
21
open import foundation.subtypes
22
+
open import foundation.transport-along-identifications
16
23
open import foundation.unions-subtypes
17
24
open import foundation.universe-levels
18
25
19
-
open import metric-spaces.located-metric-spaces
26
+
open import metric-spaces.equality-of-metric-spaces
27
+
open import metric-spaces.functions-metric-spaces
28
+
open import metric-spaces.images-isometries-metric-spaces
29
+
open import metric-spaces.images-metric-spaces
30
+
open import metric-spaces.images-short-functions-metric-spaces
31
+
open import metric-spaces.images-uniformly-continuous-functions-metric-spaces
32
+
open import metric-spaces.isometries-metric-spaces
20
33
open import metric-spaces.metric-spaces
34
+
open import metric-spaces.short-functions-metric-spaces
21
35
open import metric-spaces.subspaces-metric-spaces
36
+
open import metric-spaces.uniformly-continuous-functions-metric-spaces
22
37
```
23
38
24
39
</details>
@@ -72,6 +87,155 @@ module _
72
87
type-approximation-Metric-Space : UU (l1 ⊔ l3)
73
88
type-approximation-Metric-Space =
74
89
type-subtype subset-approximation-Metric-Space
90
+
91
+
is-approximation-approximation-Metric-Space :
92
+
is-approximation-Metric-Space X ε subset-approximation-Metric-Space
93
+
is-approximation-approximation-Metric-Space = pr2 S
94
+
```
95
+
96
+
## Properties
97
+
98
+
### If `μ` is a modulus of uniform continuity for `f : X → Y` and `A` is a `(μ ε)`-approximation of `X`, then `im f A` is an `ε`-approximation of `im f X`
0 commit comments