Skip to content

Commit e8d4581

Browse files
committed
Revised bcc Fe example
1 parent 93e1375 commit e8d4581

File tree

3 files changed

+59
-63
lines changed

3 files changed

+59
-63
lines changed

content/magnon/bccFeT1K/inpsd.dat

Lines changed: 17 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -6,11 +6,11 @@ cell -0.5000000000 0.5000000000 0.5000000000
66
0.5000000000 0.5000000000 -0.5000000000
77
Sym 1 Symmetry of lattice (0 for no, 1 for cubic, 2 for 2d cubic, 3 for hexagonal)
88

9-
posfile ./posfile
10-
momfile ./momfile
11-
exchange ./jASD2S
12-
anisotropy ./kfile
13-
maptype 2
9+
posfile ./posfile Atomic positions
10+
momfile ./momfile Local atomic moments
11+
exchange ./jASD2S Exchange interactions
12+
anisotropy ./kfile Single site anisotropy
13+
maptype 2 Use maptype to map up exchange couplings
1414

1515
do_prnstruct 0
1616
SDEalgh 1 SDE solver: 1=midpoint, 2=heun, 3=heun3, 4=Heun_proper, 5=Depondt
@@ -30,18 +30,19 @@ do_avrg Y Measure averages
3030
do_cumu Y
3131
plotenergy 1
3232

33-
do_sc Q
34-
sc_emax 40.0
35-
sc_eres 0.05
36-
do_ams Y
37-
do_magdos Y
38-
qpoints D
39-
qfile ./qfile.kpath
33+
do_sc Q Sample the dynamic structure factor
34+
sc_emax 40.0 Maximum sampling energy
35+
sc_eres 0.05 Minimum sampling energy
4036
do_sc_local_axis Y
41-
sc_window_fun 2
42-
sc_average F
37+
sc_window_fun 2 Choice of FFT window function (1=box, 2=Hann, 3=Hamming, 4=Blackman-Harris)
38+
sc_average F Averaging of spin correlation
4339

44-
do_stiffness Y
40+
do_ams Y Collinear Adiabatic magnon spectra
41+
do_magdos Y Calculate magnon density of states
42+
qpoints D Direct coordinates
43+
qfile ./qfile.kpath q points
44+
45+
do_stiffness Y Calculation of spin wave stiffness
4546
eta_max 18
4647
eta_min 12
47-
alat 2.83e-10
48+
alat 2.83e-10 Length scale for lattice vectors

content/magnon/bccFeT300K/inpsd.dat

Lines changed: 17 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -6,11 +6,11 @@ cell -0.5000000000 0.5000000000 0.5000000000
66
0.5000000000 0.5000000000 -0.5000000000
77
Sym 1 Symmetry of lattice (0 for no, 1 for cubic, 2 for 2d cubic, 3 for hexagonal)
88

9-
posfile ./posfile
10-
momfile ./momfile
11-
exchange ./jASD2S
12-
anisotropy ./kfile
13-
maptype 2
9+
posfile ./posfile Atomic positions
10+
momfile ./momfile Local atomic moments
11+
exchange ./jASD2S Exchange interactions
12+
anisotropy ./kfile Single site anisotropy
13+
maptype 2 Use maptype to map up exchange couplings
1414

1515
do_prnstruct 0
1616
SDEalgh 1 SDE solver: 1=midpoint, 2=heun, 3=heun3, 4=Heun_proper, 5=Depondt
@@ -30,18 +30,19 @@ do_avrg Y Measure averages
3030
do_cumu Y
3131
plotenergy 1
3232

33-
do_sc Q
34-
sc_emax 40.0
35-
sc_eres 0.05
36-
do_ams Y
37-
do_magdos Y
38-
qpoints D
39-
qfile ./qfile.kpath
33+
do_sc Q Sample the dynamic structure factor
34+
sc_emax 40.0 Maximum sampling energy
35+
sc_eres 0.05 Minimum sampling energy
4036
do_sc_local_axis Y
41-
sc_window_fun 2
42-
sc_average F
37+
sc_window_fun 2 Choice of FFT window function (1=box, 2=Hann, 3=Hamming, 4=Blackman-Harris)
38+
sc_average F Averaging of spin correlation
4339

44-
do_stiffness Y
40+
do_ams Y Collinear Adiabatic magnon spectra
41+
do_magdos Y Calculate magnon density of states
42+
qpoints D Direct coordinates
43+
qfile ./qfile.kpath q points
44+
45+
do_stiffness Y Calculation of spin wave stiffness
4546
eta_max 18
4647
eta_min 12
47-
alat 2.83e-10
48+
alat 2.83e-10 Length scale for lattice vectors

content/magnon/magnon.rst

Lines changed: 25 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -2,33 +2,34 @@ Magnon spectra and noncollinear magnetism
22
=========================================
33

44

5-
Tutorial 1: Fe in bcc and fcc crystal structures
5+
Tutorial 1: bcc Fe at different temperature
66
------------------------------------------------
77

88
Collinear magnon spectra and influence of uniaxial anisotropy
99
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1010

11-
This example shows how to calculate the spin wave spectrum of the standard examples Fe bcc and Fe fcc and to understand the influence of the number of atoms per unit cell on the spectra together with the influence of the uniaxial anisotropy. Files are found in Fe folder.
11+
This example shows how to calculate the spin wave spectrum of the standard example bcc Fe and to understand the influence of the temperature on the spectra together with the influence of the uniaxial anisotropy. Files are found in the ``bccFeT1K`` and ``bccFeT300K`` folders.
1212

1313
Crystal & magnetic structure
1414
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1515

16-
Using the lines below with the indicated files, the crystal and magnetic structure are readily available, so that an Fe bcc system is created.
16+
Using the lines below with the indicated files, the crystal and magnetic structure are readily available, so that a simulation of a Fe bcc system is set up.
1717

1818
::
1919

2020
simid bccFe100
21-
ncell 10 10 10 System size
21+
ncell 20 20 20 System size
2222
BC P P P Boundary conditions (0=vacuum, P=periodic)
23-
cell 1.00000 0.00000 0.00000
24-
0.00000 1.00000 0.00000
25-
0.00000 0.00000 1.00000
26-
Sym 0 Symmetry of lattice (0 for no, 1 for cubic, 2 for 2d cubic, 3 for hexagonal)
27-
posfile ./posfile
28-
momfile ./momfile
29-
exchange ./jfile
23+
cell -0.5000000000 0.5000000000 0.5000000000
24+
0.5000000000 -0.5000000000 0.5000000000
25+
0.5000000000 0.5000000000 -0.5000000000
26+
Sym 1 Symmetry of lattice (0 for no, 1 for cubic, 2 for 2d cubic, 3 for hexagonal)
27+
28+
posfile ./posfile
29+
momfile ./momfile
30+
exchange ./jASD2S
3031
anisotropy ./kfile
31-
do_prnstruct 2 Flag to print lattice structure (0=off/1=on/2=print only coordinates)
32+
maptype 2
3233

3334
.. figure:: figures/tutorial1/fig1.png
3435

@@ -37,32 +38,25 @@ Fig 1. Lattice and magnetic texture.
3738
Thermalizing the system
3839
^^^^^^^^^^^^^^^^^^^^^^^
3940

40-
Using the lines below, the systems is driven to the ground state.
41+
Using the lines below, the system is brought to thermal equilibrium by means of Heat bath Monte Carlo.
4142

4243
::
4344

44-
ip_mode M
45-
ip_mcanneal 1
46-
10000 0.001 1.00e-16 0.95
47-
48-
mode M
49-
Temp 0.001 K Temperature of the system
50-
hfield 0.00000 0.00000 0.00000 Static H field
51-
mcNstep 50000 MC steps
45+
ip_mode H Initial phase parameters
46+
ip_mcanneal 1 --
47+
10000 1.0 1.00e-16 0.3 --
5248

53-
.. figure:: figures/tutorial1/fig2.png
54-
55-
Fig 2. Energy versus number of iterations.
49+
Linear spin wave spectra
50+
^^^^^^^^^^^^^^^^^^^^^^^^
5651

57-
Spin wave spectrum
58-
^^^^^^^^^^^^^^^^^^
59-
We calculate the spin wave spectrum (in this case, a collinear adiabatic magnon spectra (AMS)) at the list of Q points ``qfile``. Use ``qmaker`` script.
52+
Below the critical temperature bcc Fe has long range collinear ordering of spins. We calculate the adiabatic magnon spectra (AMS) using linear spin wave theory for collinear spin textures at the list of q points specified in the ``qfile.kpath``. Note that the spin wave is calculated for the T=0 K ground state as specified in the ``momfile``. The list of q points were calculated from the ``preQ.py`` script which analyses the space group symmetry of the crystal cell,
6053

6154
::
6255

63-
do_ams Y Collinear Adiabatic magnon spectra
64-
qpoints D Direct coordinates
65-
qfile ./qfile Path along the high symmetry points in the reciprocal space
56+
do_ams Y Collinear Adiabatic magnon spectra
57+
do_magdos Y Calculate magnon density of states
58+
qpoints D Direct coordinates
59+
qfile ./qfile.kpath q points
6660

6761
**The first Brilluoin zone of a body centered cubic lattice**
6862

@@ -81,7 +75,7 @@ Fig 5. High symmetry points.
8175
Plotting the spectrum
8276
^^^^^^^^^^^^^^^^^^^^^
8377

84-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 2.
78+
Use the UppASD graphical interface ``ASD_GUI`` or the ``postQ.py`` script to plot the linear spin wave spectra and the dynamical structure factor.
8579

8680
.. figure:: figures/tutorial1/fig6.png
8781

0 commit comments

Comments
 (0)