You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This example shows how to calculate the spin wave spectrum of the standard examples Fe bcc and Fe fcc and to understand the influence of the number of atoms per unit cell on the spectra together with the influence of the uniaxial anisotropy. Files are found in Fe folder.
11
+
This example shows how to calculate the spin wave spectrum of the standard example bcc Fe and to understand the influence of the temperature on the spectra together with the influence of the uniaxial anisotropy. Files are found in the ``bccFeT1K`` and ``bccFeT300K`` folders.
12
12
13
13
Crystal & magnetic structure
14
14
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15
15
16
-
Using the lines below with the indicated files, the crystal and magnetic structure are readily available, so that an Fe bcc system is created.
16
+
Using the lines below with the indicated files, the crystal and magnetic structure are readily available, so that a simulation of a Fe bcc system is set up.
17
17
18
18
::
19
19
20
20
simid bccFe100
21
-
ncell 10 10 10 System size
21
+
ncell 2020 20 System size
22
22
BC P P P Boundary conditions (0=vacuum, P=periodic)
23
-
cell 1.00000 0.00000 0.00000
24
-
0.00000 1.00000 0.00000
25
-
0.00000 0.00000 1.00000
26
-
Sym 0 Symmetry of lattice (0 for no, 1 for cubic, 2 for 2d cubic, 3 for hexagonal)
27
-
posfile ./posfile
28
-
momfile ./momfile
29
-
exchange ./jfile
23
+
cell -0.5000000000 0.5000000000 0.5000000000
24
+
0.5000000000 -0.5000000000 0.5000000000
25
+
0.5000000000 0.5000000000 -0.5000000000
26
+
Sym 1 Symmetry of lattice (0 for no, 1 for cubic, 2 for 2d cubic, 3 for hexagonal)
27
+
28
+
posfile ./posfile
29
+
momfile ./momfile
30
+
exchange ./jASD2S
30
31
anisotropy ./kfile
31
-
do_prnstruct 2 Flag to print lattice structure (0=off/1=on/2=print only coordinates)
32
+
maptype 2
32
33
33
34
.. figure:: figures/tutorial1/fig1.png
34
35
@@ -37,32 +38,25 @@ Fig 1. Lattice and magnetic texture.
37
38
Thermalizing the system
38
39
^^^^^^^^^^^^^^^^^^^^^^^
39
40
40
-
Using the lines below, the systems is driven to the ground state.
41
+
Using the lines below, the system is brought to thermal equilibrium by means of Heat bath Monte Carlo.
41
42
42
43
::
43
44
44
-
ip_mode M
45
-
ip_mcanneal 1
46
-
10000 0.001 1.00e-16 0.95
47
-
48
-
mode M
49
-
Temp 0.001 K Temperature of the system
50
-
hfield 0.00000 0.00000 0.00000 Static H field
51
-
mcNstep 50000 MC steps
45
+
ip_mode H Initial phase parameters
46
+
ip_mcanneal 1 --
47
+
10000 1.0 1.00e-16 0.3 --
52
48
53
-
.. figure:: figures/tutorial1/fig2.png
54
-
55
-
Fig 2. Energy versus number of iterations.
49
+
Linear spin wave spectra
50
+
^^^^^^^^^^^^^^^^^^^^^^^^
56
51
57
-
Spin wave spectrum
58
-
^^^^^^^^^^^^^^^^^^
59
-
We calculate the spin wave spectrum (in this case, a collinear adiabatic magnon spectra (AMS)) at the list of Q points ``qfile``. Use ``qmaker`` script.
52
+
Below the critical temperature bcc Fe has long range collinear ordering of spins. We calculate the adiabatic magnon spectra (AMS) using linear spin wave theory for collinear spin textures at the list of q points specified in the ``qfile.kpath``. Note that the spin wave is calculated for the T=0 K ground state as specified in the ``momfile``. The list of q points were calculated from the ``preQ.py`` script which analyses the space group symmetry of the crystal cell,
60
53
61
54
::
62
55
63
-
do_ams Y Collinear Adiabatic magnon spectra
64
-
qpoints D Direct coordinates
65
-
qfile ./qfile Path along the high symmetry points in the reciprocal space
56
+
do_ams Y Collinear Adiabatic magnon spectra
57
+
do_magdos Y Calculate magnon density of states
58
+
qpoints D Direct coordinates
59
+
qfile ./qfile.kpath q points
66
60
67
61
**The first Brilluoin zone of a body centered cubic lattice**
68
62
@@ -81,7 +75,7 @@ Fig 5. High symmetry points.
81
75
Plotting the spectrum
82
76
^^^^^^^^^^^^^^^^^^^^^
83
77
84
-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 2.
78
+
Use the UppASD graphical interface ``ASD_GUI`` or the ``postQ.py`` script to plot the linear spin wave spectra and the dynamical structure factor.
0 commit comments