-
Notifications
You must be signed in to change notification settings - Fork 1.4k
Description
May I ask you a few questions about video super-resolution? @xinntao
I'm using Basic VSR++, and I suspect there is a problem with my configuration file.
train_BasicVSRPP_REDS_test.yml
GENERATE TIME: Wed Sep 10 15:33:31 2025
CMD:
/public/home/jsj_sjfx_jjh/BasicSR-master/basicsr/train.py -opt /public/home/jsj_sjfx_jjh/BasicSR-master/options/train/BasicVSRPP/train_BasicVSRPP_REDS_test.yml
general settings
name: train_BasicVSRPP_REDS
model_type: VideoRecurrentModel
scale: 4
num_gpu: 1 # official: 8 GPUs
manual_seed: 0
dataset and data loader settings
datasets:
train:
name: REDS
type: REDSRecurrentDataset
dataroot_gt: /public/home/jsj_sjfx_jjh/data/data_JILIN189/train/GT/
dataroot_lq: /public/home/jsj_sjfx_jjh/data/data_JILIN189/train/LR4x/
meta_info_file: "/public/home/jsj_sjfx_jjh/data/data_JILIN189/meta_info_REDS_GT.txt"
val_partition: REDS4 # set to 'official' when use the official validation partition
test_mode: False
io_backend:
type: disk
num_frame: 15
gt_size: 256
interval_list: [1]
random_reverse: false
use_hflip: true
use_rot: true
# data loader
num_worker_per_gpu: 0
batch_size_per_gpu: 1
dataset_enlarge_ratio: 200
prefetch_mode: ~
val:
name: REDS4
type: VideoRecurrentTestDataset
dataroot_gt: /public/home/jsj_sjfx_jjh/data/data_JILIN189/eval/GT/
dataroot_lq: /public/home/jsj_sjfx_jjh/data/data_JILIN189/eval/LR4x/
cache_data: true
io_backend:
type: disk
num_frame: -1 # not needed
network structures
network_g:
type: BasicVSRPlusPlus
mid_channels: 64
num_blocks: 7
is_low_res_input: true
spynet_path: experiments/pretrained_models/spynet_sintel_final-3d2a1287.pth
path
path:
pretrain_network_g: ~
strict_load_g: true
resume_state: ~
training settings
train:
ema_decay: 0.999
optim_g:
type: Adam
lr: !!float 2e-4
weight_decay: 0
betas: [0.9, 0.99]
capturable: True
scheduler:
type: CosineAnnealingRestartLR
periods: [200000]
restart_weights: [1]
eta_min: !!float 1e-7
total_iter: 200000
warmup_iter: -1 # no warm up
fix_flow: 5000
flow_lr_mul: 0.125
losses
pixel_opt:
type: CharbonnierLoss
loss_weight: 1.0
reduction: mean
validation settings
val:
val_freq: 5000
save_img: False
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
better: higher # the higher, the better. Default: higher
niqe:
type: calculate_niqe
crop_border: 0
better: lower # the lower, the better
logging settings
logger:
print_freq: 100
save_checkpoint_freq: 10000
use_tb_logger: true
wandb:
project: ~
resume_id: ~
dist training settings
dist_params:
backend: nccl
port: 29500
find_unused_parameters: true
