Skip to content

Custom Model Inference gives all black images #169

@KawaShubh

Description

@KawaShubh

Hello, first of all thank you for your work but i am facing some issues.
I have followed the code given in your github, trained stage 1 and stage 2
for custom model, i had to give my own training configuration file,
model:
cldm:
target: diffbir.model.cldm.ControlLDM
params:
latent_scale_factor: 0.18215
unet_cfg:
use_checkpoint: True
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False
vae_cfg:
embed_dim: 4
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
clip_cfg:
embed_dim: 1024
vision_cfg:
image_size: 224
layers: 32
width: 1280
head_width: 80
patch_size: 14
text_cfg:
context_length: 77
vocab_size: 49408
width: 1024
heads: 16
layers: 24
layer: "penultimate"
controlnet_cfg:
use_checkpoint: True
image_size: 32 # unused
in_channels: 4
hint_channels: 4
model_channels: 320
attention_resolutions: [4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False

diffusion:
target: diffbir.model.gaussian_diffusion.Diffusion # Class path to Diffusion
params:
linear_start: 0.00085
linear_end: 0.0120
timesteps: 1000

swinir:
target: diffbir.model.swinir.SwinIR
params:
img_size: 64
patch_size: 1
in_chans: 3
embed_dim: 64
depths: [4,4]
num_heads: [4, 4]
window_size: 4
mlp_ratio: 2
sf: 8
img_range: 1.0
upsampler: "nearest+conv"
resi_connection: "1conv"
unshuffle: True
unshuffle_scale: 8

train:
sd_path: /media/admin1/DL/CapsNetwork/Unsupervised/Diffusion/DiffBIR/weights/v2-1_512-ema-pruned.ckpt # Original SD weights
swinir_path: /media/admin1/DL/CapsNetwork/Unsupervised/Diffusion/DiffBIR/experiments_LR_SWIN/checkpoints/0150000.pt # Original SwinIR weights

i provided the path of trained stage 2 model in python -u inference.py
--upscale 4
--version custom
--train_cfg [path/to/training/config]
--ckpt [path/to/saved/checkpoint]
--captioner llava
--cfg_scale 8
--noise_aug 0
--input inputs/demo/bsr
--output results/custom_demo_bsr

have i done anything wrong?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions