-
Notifications
You must be signed in to change notification settings - Fork 622
Open
Description
It always predicts 464 for every sample...
import torch
import pickle as pkl
import time
import numpy as np
import cv2
import matplotlib.pyplot as plt
import torchvision.models as models
import torchvision.transforms as transforms
def str2img(str_b):
return cv2.imdecode(np.fromstring(str_b, np.uint8), cv2.IMREAD_COLOR)
def load_pickle(path):
begin_st = time.time()
with open(path, 'rb') as f:
print("Loading pickle object from {}".format(path))
v = pkl.load(f)
print("=> Done ({:.4f} s)".format(time.time() - begin_st))
return v
d = load_pickle('val224_compressed.pkl')
img224 = 0
target224 = 0
for img, target in zip(d['data'], d['target']):
img224 = str2img(img)
target224 = target
break
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
img_tensor = transforms.ToTensor()(img224) / 255.
normalized_image = normalize(img_tensor)
model = models.resnet18(pretrained=True).eval()
pred = model(normalized_image.unsqueeze(0))
print(pred.argmax(1), target224)
Metadata
Metadata
Assignees
Labels
No labels