|
| 1 | +""" |
| 2 | +Responsible for doing Natural Language Processing. |
| 3 | +It should ideally operate on the extracted text. |
| 4 | +
|
| 5 | +It should have ability to perform things like: |
| 6 | +- Parts of Speech tagging. |
| 7 | +- Named Entity Recognition |
| 8 | +- Finding digits, words etc. |
| 9 | +- Stopwords removal |
| 10 | +- Compute Lexical Diversity |
| 11 | +
|
| 12 | +Later, we want it to perform: |
| 13 | +- Summarization |
| 14 | +- Answer basic question |
| 15 | +""" |
| 16 | + |
| 17 | +import logging |
| 18 | +import spacy |
| 19 | + |
| 20 | +logger = logging.getLogger(__name__) |
| 21 | + |
| 22 | +nlp = spacy.load("en_core_web_sm") |
| 23 | + |
| 24 | + |
| 25 | +def parts_of_speech(text: str): |
| 26 | + """ |
| 27 | + Extracts parts of speech from the text |
| 28 | + """ |
| 29 | + nouns = [] |
| 30 | + verbs = [] |
| 31 | + doc = nlp(text) |
| 32 | + for token in doc: |
| 33 | + if token.pos_ == "PROPN": |
| 34 | + nouns.append(token) |
| 35 | + elif token.pos_ == "VERB": |
| 36 | + verbs.append(token) |
| 37 | + data = { |
| 38 | + "nouns": nouns, |
| 39 | + "verbs": verbs |
| 40 | + } |
| 41 | + return data |
| 42 | + |
| 43 | + |
| 44 | +def entities(text: str): |
| 45 | + doc = nlp(text) |
| 46 | + ents = [ent.text for ent in doc.ents] |
| 47 | + return ents |
| 48 | + |
| 49 | + |
| 50 | +def remove_punctuations(text: str): |
| 51 | + doc = nlp(text) |
| 52 | + return [token.text for token in doc if not token.is_punct] |
| 53 | + |
| 54 | + |
| 55 | +def remove_stopwords(text: str): |
| 56 | + doc = nlp(text) |
| 57 | + return [token.text for token in doc if not token.is_stop] |
| 58 | + |
| 59 | + |
| 60 | +def remove_punctuations_and_stopwords(text: str): |
| 61 | + doc = nlp(text) |
| 62 | + tokens = [] |
| 63 | + for token in doc: |
| 64 | + if not token.is_stop and not token.is_punct: |
| 65 | + tokens.append(token) |
| 66 | + return tokens |
| 67 | + |
| 68 | + |
| 69 | +def summarize(text: str): |
| 70 | + pass |
| 71 | + |
| 72 | + |
| 73 | +def converse(text: str, question: str): |
| 74 | + """ |
| 75 | + Answer simple questions like: |
| 76 | + - Who did something? |
| 77 | + - When something happened? |
| 78 | + - How much does something take. |
| 79 | + - Where did something happen. |
| 80 | +
|
| 81 | + The following constructs will play a role here: |
| 82 | + - Parts of Speech (POS tagging) |
| 83 | + - Named Entities (NER) |
| 84 | + - Syntactic Dependencies (dep_) |
| 85 | + - Rule based matching. In addition to regex, use token attributes like is_punct, is_stop etc. |
| 86 | + """ |
| 87 | + proper_nouns = [] |
| 88 | + verbs = [] |
| 89 | + subjects = [] |
| 90 | + objects = [] |
| 91 | + prepositions = [] |
| 92 | + numerics = [] |
| 93 | + dates = [] |
| 94 | + doc = nlp(text) |
| 95 | + lowered_question = question.lower() |
| 96 | + for token in doc: |
| 97 | + logger.info(f"Token: {token.text}, POS: {token.pos_}") |
| 98 | + if token.pos_ == "PROPN": |
| 99 | + proper_nouns.append(token) |
| 100 | + if token.pos_ == "VERB": |
| 101 | + verbs.append(token) |
| 102 | + if token.dep_ == "nsubj": |
| 103 | + subjects.append(token) |
| 104 | + if token.dep_ == "pobj": |
| 105 | + objects.append(token) |
| 106 | + if token.pos_ == 'ADP': |
| 107 | + prepositions.append(token) |
| 108 | + if token.like_num: |
| 109 | + numerics.append(token) |
| 110 | + for ent in doc.ents: |
| 111 | + logger.info(f"Entity: {ent.text}, Type: {ent.label_}") |
| 112 | + if ent.label_ == "DATE": |
| 113 | + dates.append(ent) |
| 114 | + logger.info(f"Nouns: {proper_nouns}") |
| 115 | + logger.info(f"Verbs: {verbs}") |
| 116 | + logger.info(f"Subjects: {subjects}") |
| 117 | + logger.info(f"Prepositions: {prepositions}") |
| 118 | + if "who" in lowered_question: |
| 119 | + # The answer should probably be a proper noun. |
| 120 | + if len(proper_nouns) == 1: |
| 121 | + return proper_nouns[0].text |
| 122 | + # If there are multiple nouns, then most probably the subject instead of the object is the answer. |
| 123 | + # Hence dependency parsing can help us get that. |
| 124 | + # We are currently dealing with single sentences. |
| 125 | + # TODO: Modify it to get more context from the question, and then infer the correct subject |
| 126 | + return subjects[0] |
| 127 | + if "where" in lowered_question: |
| 128 | + # It means we want a place as answer |
| 129 | + # The answer should probably be a noun |
| 130 | + # Very likely it is followed by a prepositional phrase. |
| 131 | + # Examples: They went "to" Colombo, kept on "the" table. etc. |
| 132 | + if len(objects) > 0: |
| 133 | + return objects[0] |
| 134 | + # Statements like "apaar went to play" |
| 135 | + # Here play is not an object. So use the token appearing right after preposition |
| 136 | + if len(prepositions) > 0: |
| 137 | + prep = prepositions[0] |
| 138 | + return doc[prep.i + 1] |
| 139 | + if "how much" in lowered_question: |
| 140 | + # A quantity has to be returned |
| 141 | + # A quantity would mean a numeric |
| 142 | + if len(numerics) > 0: |
| 143 | + return numerics[0] |
| 144 | + if "when" in lowered_question: |
| 145 | + # A date has to be returned |
| 146 | + if len(dates) > 0: |
| 147 | + return dates[0] |
| 148 | + return None |
0 commit comments