@@ -87,25 +87,32 @@ Once you have installed pyjaspar, you can create jaspardb class object:
8787 >>> from pyjaspar import jaspardb
8888
8989 #Create the JASPAR2022 release object
90- >>> jdb_obj = jaspardb(release='JASPAR2022 ')
90+ >>> jdb_obj = jaspardb(release='JASPAR2024 ')
9191
9292 #Fetch motif by ID
9393 >>> motif = jdb_obj.fetch_motif_by_id('MA0095.2')
9494 >>> print(motif.name)
9595 YY1
9696
9797 #Fetch motifs by TF name
98- >>> motifs = jdb_obj.fetch_motifs_by_name('CTCF ')
98+ >>> motifs = jdb_obj.fetch_motifs_by_name('KFL4 ')
9999 >>> print(len(motifs))
100- 2
100+ 1
101101
102- #Get CORE vertebrates collection
102+ # Get a dictionary of frequency count matrics
103+ >>> print(motifs[0].counts)
104+ {'A': [2465.0, 2105.0, 7021.0, 1173.0, 45602.0, 852.0, 1617.0, 1202.0],
105+ 'C': [49209.0, 47865.0, 45405.0, 52875.0, 161.0, 52366.0, 51112.0, 51045.0],
106+ 'G': [1583.0, 1214.0, 1422.0, 793.0, 6598.0, 1470.0, 1870.0, 1005.0],
107+ 'T': [2560.0, 4633.0, 1969.0, 976.0, 3456.0, 1129.0, 1218.0, 2565.0]}
108+
109+ #Get CORE vertebrates non-redundent collection
103110 >>> motifs = jdb_obj.fetch_motifs(
104- collection = 'CORE',
105- tax_group = ['vertebrates']
106- )
111+ collection = [ 'CORE'] ,
112+ tax_group = ['Vertebrates'],
113+ all_versions = False )
107114 >>> print(len(motifs))
108- 746
115+ 879
109116 ## loop through the motifs list and perform analysis
110117 >>> for motif in motifs:
111118 pass
0 commit comments