@@ -42,6 +42,8 @@ def prepare_data(first_class, second_class, blacklisted_channels=None):
42
42
dataset_y = list ()
43
43
for data_type in (first_class , second_class ):
44
44
for file in glob .glob (os .path .join ('data' , data_type , '*' , '*.csv' )):
45
+ data_x_temp = list ()
46
+ data_y_temp = list ()
45
47
logging .info (file )
46
48
board_id = os .path .basename (os .path .dirname (file ))
47
49
try :
@@ -58,13 +60,17 @@ def prepare_data(first_class, second_class, blacklisted_channels=None):
58
60
feature_vector = bands [0 ]
59
61
feature_vector = feature_vector .astype (float )
60
62
dataset_x .append (feature_vector )
63
+ data_x_temp .append (feature_vector )
61
64
if data_type == first_class :
62
65
dataset_y .append (0 )
66
+ data_y_temp .append (0 )
63
67
else :
64
68
dataset_y .append (1 )
69
+ data_y_temp .append (0 )
65
70
cur_pos = cur_pos + int (window_size * overlaps [num ] * sampling_rate )
66
71
except Exception as e :
67
72
logging .error (str (e ), exc_info = True )
73
+ print_dataset_info ((data_x_temp , data_y_temp ))
68
74
69
75
logging .info ('1st Class: %d 2nd Class: %d' % (len ([x for x in dataset_y if x == 0 ]), len ([x for x in dataset_y if x == 1 ])))
70
76
@@ -115,7 +121,7 @@ def print_dataset_info(data):
115
121
116
122
def train_regression_mindfulness (data ):
117
123
model = LogisticRegression (solver = 'liblinear' , max_iter = 4000 ,
118
- penalty = 'l2' , random_state = 2 , fit_intercept = True , intercept_scaling = 0.2 )
124
+ penalty = 'l2' , random_state = 2 , fit_intercept = False , intercept_scaling = 3 )
119
125
logging .info ('#### Logistic Regression ####' )
120
126
scores = cross_val_score (model , data [0 ], data [1 ], cv = 5 , scoring = 'f1_macro' , n_jobs = 8 )
121
127
logging .info ('f1 macro %s' % str (scores ))
@@ -207,14 +213,14 @@ def main():
207
213
dataset_y = pickle .load (f )
208
214
data = dataset_x , dataset_y
209
215
else :
210
- data = prepare_data ('relaxed' , 'focused' , blacklisted_channels = { 'T3' , 'T4' } )
216
+ data = prepare_data ('relaxed' , 'focused' )
211
217
print_dataset_info (data )
212
218
train_regression_mindfulness (data )
213
- train_svm_mindfulness (data )
214
- train_knn_mindfulness (data )
215
- train_random_forest_mindfulness (data )
216
- train_mlp_mindfulness (data )
217
- train_stacking_classifier (data )
219
+ # train_svm_mindfulness(data)
220
+ # train_knn_mindfulness(data)
221
+ # train_random_forest_mindfulness(data)
222
+ # train_mlp_mindfulness(data)
223
+ # train_stacking_classifier(data)
218
224
219
225
220
226
if __name__ == '__main__' :
0 commit comments