|
9 | 9 | from typing import List, Tuple
|
10 | 10 |
|
11 | 11 | import numpy as np
|
| 12 | +import pytest |
12 | 13 | import xarray as xr
|
13 | 14 | from sklearn.metrics import mean_squared_error
|
14 | 15 |
|
15 |
| -from cmethods.CMethods import CMethods |
| 16 | +from cmethods.CMethods import CMethods, UnknownMethodError |
16 | 17 |
|
17 | 18 |
|
18 | 19 | class TestMethods(unittest.TestCase):
|
| 20 | + def setUp(self) -> None: |
| 21 | + obsh_add, obsp_add, simh_add, simp_add = self.get_datasets(kind="+") |
| 22 | + obsh_mult, obsp_mult, simh_mult, simp_mult = self.get_datasets(kind="*") |
| 23 | + |
| 24 | + self.data = { |
| 25 | + "+": { |
| 26 | + "obsh": obsh_add["+"], |
| 27 | + "obsp": obsp_add["+"], |
| 28 | + "simh": simh_add["+"], |
| 29 | + "simp": simp_add["+"], |
| 30 | + }, |
| 31 | + "*": { |
| 32 | + "obsh": obsh_mult["*"], |
| 33 | + "obsp": obsp_mult["*"], |
| 34 | + "simh": simh_mult["*"], |
| 35 | + "simp": simp_mult["*"], |
| 36 | + }, |
| 37 | + } |
| 38 | + |
19 | 39 | def get_datasets(
|
20 | 40 | self,
|
21 | 41 | kind: str,
|
@@ -95,180 +115,276 @@ def test_linear_scaling(self) -> None:
|
95 | 115 | """Tests the linear scaling method"""
|
96 | 116 |
|
97 | 117 | for kind in ("+", "*"):
|
98 |
| - obsh, obsp, simh, simp = self.get_datasets(kind=kind) |
99 | 118 | ls_result = CMethods().linear_scaling(
|
100 |
| - obs=obsh[kind][:, 0, 0], |
101 |
| - simh=simh[kind][:, 0, 0], |
102 |
| - simp=simp[kind][:, 0, 0], |
| 119 | + obs=self.data[kind]["obsh"][:, 0, 0], |
| 120 | + simh=self.data[kind]["simh"][:, 0, 0], |
| 121 | + simp=self.data[kind]["simp"][:, 0, 0], |
103 | 122 | kind=kind,
|
104 | 123 | )
|
105 | 124 | assert isinstance(ls_result, xr.core.dataarray.DataArray)
|
106 | 125 | assert mean_squared_error(
|
107 |
| - ls_result, obsp[kind][:, 0, 0], squared=False |
| 126 | + ls_result, self.data[kind]["obsp"][:, 0, 0], squared=False |
108 | 127 | ) < mean_squared_error(
|
109 |
| - simp[kind][:, 0, 0], obsp[kind][:, 0, 0], squared=False |
| 128 | + self.data[kind]["simp"][:, 0, 0], |
| 129 | + self.data[kind]["obsp"][:, 0, 0], |
| 130 | + squared=False, |
110 | 131 | )
|
111 | 132 |
|
112 | 133 | def test_variance_scaling(self) -> None:
|
113 | 134 | """Tests the variance scaling method"""
|
114 |
| - |
115 |
| - obsh, obsp, simh, simp = self.get_datasets(kind="+") |
| 135 | + kind = "+" |
116 | 136 | vs_result = CMethods().variance_scaling(
|
117 |
| - obs=obsh["+"][:, 0, 0], |
118 |
| - simh=simh["+"][:, 0, 0], |
119 |
| - simp=simp["+"][:, 0, 0], |
| 137 | + obs=self.data[kind]["obsh"][:, 0, 0], |
| 138 | + simh=self.data[kind]["simh"][:, 0, 0], |
| 139 | + simp=self.data[kind]["simp"][:, 0, 0], |
120 | 140 | kind="+",
|
121 | 141 | )
|
122 | 142 | assert isinstance(vs_result, xr.core.dataarray.DataArray)
|
123 | 143 | assert mean_squared_error(
|
124 |
| - vs_result, obsp["+"][:, 0, 0], squared=False |
125 |
| - ) < mean_squared_error(simp["+"][:, 0, 0], obsp["+"][:, 0, 0], squared=False) |
| 144 | + vs_result, self.data[kind]["obsp"][:, 0, 0], squared=False |
| 145 | + ) < mean_squared_error( |
| 146 | + self.data[kind]["simp"][:, 0, 0], |
| 147 | + self.data[kind]["obsp"][:, 0, 0], |
| 148 | + squared=False, |
| 149 | + ) |
126 | 150 |
|
127 | 151 | def test_delta_method(self) -> None:
|
128 | 152 | """Tests the delta method"""
|
129 | 153 |
|
130 | 154 | for kind in ("+", "*"):
|
131 |
| - obsh, obsp, simh, simp = self.get_datasets(kind=kind) |
132 | 155 | dm_result = CMethods().delta_method(
|
133 |
| - obs=obsh[kind][:, 0, 0], |
134 |
| - simh=simh[kind][:, 0, 0], |
135 |
| - simp=simp[kind][:, 0, 0], |
| 156 | + obs=self.data[kind]["obsh"][:, 0, 0], |
| 157 | + simh=self.data[kind]["simh"][:, 0, 0], |
| 158 | + simp=self.data[kind]["simp"][:, 0, 0], |
136 | 159 | kind=kind,
|
137 | 160 | )
|
138 | 161 | assert isinstance(dm_result, xr.core.dataarray.DataArray)
|
139 | 162 | assert mean_squared_error(
|
140 |
| - dm_result, obsp[kind][:, 0, 0], squared=False |
| 163 | + dm_result, self.data[kind]["obsp"][:, 0, 0], squared=False |
141 | 164 | ) < mean_squared_error(
|
142 |
| - simp[kind][:, 0, 0], obsp[kind][:, 0, 0], squared=False |
| 165 | + self.data[kind]["simp"][:, 0, 0], |
| 166 | + self.data[kind]["obsp"][:, 0, 0], |
| 167 | + squared=False, |
143 | 168 | )
|
144 | 169 |
|
145 | 170 | def test_quantile_mapping(self) -> None:
|
146 | 171 | """Tests the quantile mapping method"""
|
147 | 172 |
|
148 | 173 | for kind in ("+", "*"):
|
149 |
| - obsh, obsp, simh, simp = self.get_datasets(kind=kind) |
150 | 174 | qm_result = CMethods().quantile_mapping(
|
151 |
| - obs=obsh[kind][:, 0, 0], |
152 |
| - simh=simh[kind][:, 0, 0], |
153 |
| - simp=simp[kind][:, 0, 0], |
| 175 | + obs=self.data[kind]["obsh"][:, 0, 0], |
| 176 | + simh=self.data[kind]["simh"][:, 0, 0], |
| 177 | + simp=self.data[kind]["simp"][:, 0, 0], |
154 | 178 | n_quantiles=100,
|
155 | 179 | kind=kind,
|
156 | 180 | )
|
157 | 181 | assert isinstance(qm_result, xr.core.dataarray.DataArray)
|
158 | 182 | assert mean_squared_error(
|
159 |
| - qm_result, obsp[kind][:, 0, 0], squared=False |
| 183 | + qm_result, self.data[kind]["obsp"][:, 0, 0], squared=False |
160 | 184 | ) < mean_squared_error(
|
161 |
| - simp[kind][:, 0, 0], obsp[kind][:, 0, 0], squared=False |
| 185 | + self.data[kind]["simp"][:, 0, 0], |
| 186 | + self.data[kind]["obsp"][:, 0, 0], |
| 187 | + squared=False, |
162 | 188 | )
|
163 | 189 |
|
164 | 190 | def test_detrended_quantile_mapping(self) -> None:
|
165 | 191 | """Tests the detrendeed quantile mapping method"""
|
166 | 192 |
|
167 | 193 | for kind in ("+", "*"):
|
168 |
| - obsh, obsp, simh, simp = self.get_datasets(kind=kind) |
169 | 194 | dqm_result = CMethods().quantile_mapping(
|
170 |
| - obs=obsh[kind][:, 0, 0], |
171 |
| - simh=simh[kind][:, 0, 0], |
172 |
| - simp=simp[kind][:, 0, 0], |
| 195 | + obs=self.data[kind]["obsh"][:, 0, 0], |
| 196 | + simh=self.data[kind]["simh"][:, 0, 0], |
| 197 | + simp=self.data[kind]["simp"][:, 0, 0], |
173 | 198 | n_quantiles=100,
|
174 | 199 | kind=kind,
|
175 | 200 | detrended=True,
|
176 | 201 | )
|
177 | 202 | assert isinstance(dqm_result, xr.core.dataarray.DataArray)
|
178 | 203 | assert mean_squared_error(
|
179 |
| - dqm_result, obsp[kind][:, 0, 0], squared=False |
| 204 | + dqm_result, self.data[kind]["obsp"][:, 0, 0], squared=False |
180 | 205 | ) < mean_squared_error(
|
181 |
| - simp[kind][:, 0, 0], obsp[kind][:, 0, 0], squared=False |
| 206 | + self.data[kind]["simp"][:, 0, 0], |
| 207 | + self.data[kind]["obsp"][:, 0, 0], |
| 208 | + squared=False, |
182 | 209 | )
|
183 | 210 |
|
184 | 211 | def test_quantile_delta_mapping(self) -> None:
|
185 | 212 | """Tests the quantile delta mapping method"""
|
186 | 213 |
|
187 | 214 | for kind in ("+", "*"):
|
188 |
| - obsh, obsp, simh, simp = self.get_datasets(kind=kind) |
189 | 215 | qdm_result = CMethods().quantile_delta_mapping(
|
190 |
| - obs=obsh[kind][:, 0, 0], |
191 |
| - simh=simh[kind][:, 0, 0], |
192 |
| - simp=simp[kind][:, 0, 0], |
| 216 | + obs=self.data[kind]["obsh"][:, 0, 0], |
| 217 | + simh=self.data[kind]["simh"][:, 0, 0], |
| 218 | + simp=self.data[kind]["simp"][:, 0, 0], |
193 | 219 | n_quantiles=100,
|
194 | 220 | kind=kind,
|
195 | 221 | )
|
196 | 222 |
|
197 | 223 | assert isinstance(qdm_result, xr.core.dataarray.DataArray)
|
198 | 224 | assert mean_squared_error(
|
199 |
| - qdm_result, obsp[kind][:, 0, 0], squared=False |
| 225 | + qdm_result, self.data[kind]["obsp"][:, 0, 0], squared=False |
200 | 226 | ) < mean_squared_error(
|
201 |
| - simp[kind][:, 0, 0], obsp[kind][:, 0, 0], squared=False |
| 227 | + self.data[kind]["simp"][:, 0, 0], |
| 228 | + self.data[kind]["obsp"][:, 0, 0], |
| 229 | + squared=False, |
202 | 230 | )
|
203 | 231 |
|
204 | 232 | def test_3d_sclaing_methods(self) -> None:
|
205 | 233 | """Tests the scaling based methods for 3-dimentsional data sets"""
|
206 | 234 |
|
207 | 235 | kind = "+"
|
208 |
| - obsh, obsp, simh, simp = self.get_datasets(kind=kind) |
209 | 236 | for method in CMethods().SCALING_METHODS:
|
210 | 237 | result = CMethods().adjust_3d(
|
211 | 238 | method=method,
|
212 |
| - obs=obsh[kind], |
213 |
| - simh=simh[kind], |
214 |
| - simp=simp[kind], |
| 239 | + obs=self.data[kind]["obsh"], |
| 240 | + simh=self.data[kind]["simh"], |
| 241 | + simp=self.data[kind]["simp"], |
215 | 242 | kind=kind,
|
216 | 243 | goup="time.month", # default
|
217 | 244 | )
|
218 | 245 | assert isinstance(result, xr.core.dataarray.DataArray)
|
219 |
| - for lat in range(len(obsh.lat)): |
220 |
| - for lon in range(len(obsh.lon)): |
| 246 | + for lat in range(len(self.data[kind]["obsh"].lat)): |
| 247 | + for lon in range(len(self.data[kind]["obsh"].lon)): |
221 | 248 | assert mean_squared_error(
|
222 |
| - result[:, lat, lon], obsp[kind][:, lat, lon], squared=False |
| 249 | + result[:, lat, lon], |
| 250 | + self.data[kind]["obsp"][:, lat, lon], |
| 251 | + squared=False, |
223 | 252 | ) < mean_squared_error(
|
224 |
| - simp[kind][:, lat, lon], |
225 |
| - obsp[kind][:, lat, lon], |
| 253 | + self.data[kind]["simp"][:, lat, lon], |
| 254 | + self.data[kind]["obsp"][:, lat, lon], |
226 | 255 | squared=False,
|
227 | 256 | )
|
228 | 257 |
|
229 | 258 | def test_3d_distribution_methods(self) -> None:
|
230 | 259 | """Tests the distribution based methods for 3-dimentsional data sets"""
|
231 | 260 |
|
232 | 261 | for kind in ("+", "*"):
|
233 |
| - obsh, obsp, simh, simp = self.get_datasets(kind=kind) |
234 | 262 | for method in CMethods().DISTRIBUTION_METHODS:
|
235 | 263 | result = CMethods().adjust_3d(
|
236 | 264 | method=method,
|
237 |
| - obs=obsh[kind], |
238 |
| - simh=simh[kind], |
239 |
| - simp=simp[kind], |
240 |
| - n_quantiles=100, |
| 265 | + obs=self.data[kind]["obsh"], |
| 266 | + simh=self.data[kind]["simh"], |
| 267 | + simp=self.data[kind]["simp"], |
| 268 | + n_quantiles=25, |
241 | 269 | )
|
242 | 270 | assert isinstance(result, xr.core.dataarray.DataArray)
|
243 |
| - for lat in range(len(obsh.lat)): |
244 |
| - for lon in range(len(obsh.lon)): |
| 271 | + for lat in range(len(self.data[kind]["obsh"].lat)): |
| 272 | + for lon in range(len(self.data[kind]["obsh"].lon)): |
245 | 273 | assert mean_squared_error(
|
246 |
| - result[:, lat, lon], obsp[kind][:, lat, lon], squared=False |
| 274 | + result[:, lat, lon], |
| 275 | + self.data[kind]["obsp"][:, lat, lon], |
| 276 | + squared=False, |
247 | 277 | ) < mean_squared_error(
|
248 |
| - simp[kind][:, lat, lon], |
249 |
| - obsp[kind][:, lat, lon], |
| 278 | + self.data[kind]["simp"][:, lat, lon], |
| 279 | + self.data[kind]["obsp"][:, lat, lon], |
250 | 280 | squared=False,
|
251 | 281 | )
|
252 | 282 |
|
253 | 283 | def test_n_jobs(self) -> None:
|
254 |
| - obsh, obsp, simh, simp = self.get_datasets(kind="+") |
| 284 | + kind = "+" |
255 | 285 | result = CMethods().adjust_3d(
|
256 | 286 | method="quantile_mapping",
|
257 |
| - obs=obsh["+"], |
258 |
| - simh=simh["+"], |
259 |
| - simp=simp["+"], |
260 |
| - n_quantiles=100, |
| 287 | + obs=self.data[kind]["obsh"], |
| 288 | + simh=self.data[kind]["simh"], |
| 289 | + simp=self.data[kind]["simp"], |
| 290 | + n_quantiles=25, |
261 | 291 | n_jobs=2,
|
262 | 292 | )
|
263 | 293 | assert isinstance(result, xr.core.dataarray.DataArray)
|
264 |
| - for lat in range(len(obsh.lat)): |
265 |
| - for lon in range(len(obsh.lon)): |
| 294 | + for lat in range(len(self.data[kind]["obsh"].lat)): |
| 295 | + for lon in range(len(self.data[kind]["obsh"].lon)): |
266 | 296 | assert mean_squared_error(
|
267 |
| - result[:, lat, lon], obsp["+"][:, lat, lon], squared=False |
| 297 | + result[:, lat, lon], |
| 298 | + self.data[kind]["obsp"][:, lat, lon], |
| 299 | + squared=False, |
268 | 300 | ) < mean_squared_error(
|
269 |
| - simp["+"][:, lat, lon], obsp["+"][:, lat, lon], squared=False |
| 301 | + self.data[kind]["simp"][:, lat, lon], |
| 302 | + self.data[kind]["obsp"][:, lat, lon], |
| 303 | + squared=False, |
270 | 304 | )
|
271 | 305 |
|
| 306 | + def test_get_available_methods(self) -> None: |
| 307 | + assert CMethods().get_available_methods() == [ |
| 308 | + "linear_scaling", |
| 309 | + "variance_scaling", |
| 310 | + "delta_method", |
| 311 | + "quantile_mapping", |
| 312 | + "quantile_delta_mapping", |
| 313 | + ] |
| 314 | + |
| 315 | + def test_unknown_method(self) -> None: |
| 316 | + with pytest.raises(UnknownMethodError): |
| 317 | + CMethods.get_function("LOCI_INTENSITY_SCALING") |
| 318 | + |
| 319 | + kind = "+" |
| 320 | + with pytest.raises(UnknownMethodError): |
| 321 | + CMethods().adjust_3d( |
| 322 | + method="distribution_mapping", |
| 323 | + obs=self.data[kind]["obsh"], |
| 324 | + simh=self.data[kind]["simh"], |
| 325 | + simp=self.data[kind]["simp"], |
| 326 | + kind=kind, |
| 327 | + ) |
| 328 | + |
| 329 | + def test_not_implemented_methods(self) -> None: |
| 330 | + kind = "+" |
| 331 | + with pytest.raises(ValueError): |
| 332 | + CMethods.empirical_quantile_mapping( |
| 333 | + self.data[kind]["obsh"], |
| 334 | + self.data[kind]["simh"], |
| 335 | + self.data[kind]["simp"], |
| 336 | + n_quantiles=10, |
| 337 | + ) |
| 338 | + |
| 339 | + def test_invalid_adjustment_type(self) -> None: |
| 340 | + kind = "+" |
| 341 | + with pytest.raises(ValueError): |
| 342 | + CMethods.linear_scaling( |
| 343 | + self.data[kind]["obsh"], |
| 344 | + self.data[kind]["simh"], |
| 345 | + self.data[kind]["simp"], |
| 346 | + kind="/", |
| 347 | + ) |
| 348 | + with pytest.raises(ValueError): |
| 349 | + CMethods.variance_scaling( |
| 350 | + self.data[kind]["obsh"], |
| 351 | + self.data[kind]["simh"], |
| 352 | + self.data[kind]["simp"], |
| 353 | + kind="*", |
| 354 | + ) |
| 355 | + with pytest.raises(ValueError): |
| 356 | + CMethods.delta_method( |
| 357 | + self.data[kind]["obsh"], |
| 358 | + self.data[kind]["simh"], |
| 359 | + self.data[kind]["simp"], |
| 360 | + kind="/", |
| 361 | + ) |
| 362 | + with pytest.raises(ValueError): |
| 363 | + CMethods.quantile_mapping( |
| 364 | + self.data[kind]["obsh"], |
| 365 | + self.data[kind]["simh"], |
| 366 | + self.data[kind]["simp"], |
| 367 | + kind="/", |
| 368 | + n_quantiles=10, |
| 369 | + ) |
| 370 | + with pytest.raises(ValueError): |
| 371 | + CMethods.quantile_delta_mapping( |
| 372 | + self.data[kind]["obsh"], |
| 373 | + self.data[kind]["simh"], |
| 374 | + self.data[kind]["simp"], |
| 375 | + kind="/", |
| 376 | + n_quantiles=10, |
| 377 | + ) |
| 378 | + |
| 379 | + def test_get_pdf(self) -> None: |
| 380 | + assert (CMethods.get_pdf(np.arange(10), [0, 5, 11]) == np.array((5, 5))).all() |
| 381 | + |
| 382 | + def test_get_adjusted_scaling_factor(self) -> None: |
| 383 | + assert CMethods().get_adjusted_scaling_factor(10, 5) == 5 |
| 384 | + assert CMethods().get_adjusted_scaling_factor(10, 11) == 10 |
| 385 | + assert CMethods().get_adjusted_scaling_factor(-10, -11) == -10 |
| 386 | + assert CMethods().get_adjusted_scaling_factor(-11, -10) == -10 |
| 387 | + |
272 | 388 |
|
273 | 389 | if __name__ == "__main__":
|
274 | 390 | unittest.main()
|
0 commit comments