Skip to content

Commit abb7857

Browse files
committed
update readme
1 parent 6e1f8d9 commit abb7857

File tree

1 file changed

+41
-4
lines changed

1 file changed

+41
-4
lines changed

README.md

Lines changed: 41 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,15 @@ UI-TARS Desktop is a GUI Agent application based on [UI-TARS (Vision-Language Mo
1717
| &nbsp&nbsp 👓 <a href="https://github.com/web-infra-dev/midscene">Midscene (use in browser)</a>
1818
</p>
1919

20+
### ⚠️ Important Announcement: GGUF Model Performance
21+
22+
The **GGUF model** has undergone quantization, but unfortunately, its performance cannot be guaranteed. As a result, we have decided to **downgrade** it.
23+
24+
💡 **Alternative Solution**:
25+
You can use **[Cloud Deployment](#cloud-deployment)** or **[Local Deployment [vLLM]](#local-deployment-vllm)** instead.
26+
27+
We appreciate your understanding and patience as we work to ensure the best possible experience.
28+
2029
## Showcases
2130

2231
| Instruction | Video |
@@ -64,13 +73,41 @@ You can download the [latest release](https://github.com/bytedance/UI-TARS-deskt
6473

6574
<img src="./images/windows_install.png" width="400px" />
6675

67-
### Settings
76+
### Deployment
77+
78+
### Cloud Deployment
79+
We recommend using HuggingFace Inference Endpoints for fast deployment.
80+
We provide two docs for users to refer:
81+
82+
English version: [GUI Model Deployment Guide](https://juniper-switch-f10.notion.site/GUI-Model-Deployment-Guide-17b5350241e280058e98cea60317de71)
83+
84+
中文版: [GUI模型部署教程](https://bytedance.sg.larkoffice.com/docx/TCcudYwyIox5vyxiSDLlgIsTgWf#U94rdCxzBoJMLex38NPlHL21gNb)
6885

69-
#### VLM (Vision-Language Model)
86+
### Local Deployment [vLLM]
87+
We recommend using vLLM for fast deployment and inference. You need to use `vllm>=0.6.1`.
88+
```bash
89+
pip install -U transformers
90+
VLLM_VERSION=0.6.6
91+
CUDA_VERSION=cu124
92+
pip install vllm==${VLLM_VERSION} --extra-index-url https://download.pytorch.org/whl/${CUDA_VERSION}
93+
94+
```
95+
#### Download the Model
96+
We provide three model sizes on Hugging Face: **2B**, **7B**, and **72B**. To achieve the best performance, we recommend using the **7B-DPO** or **72B-DPO** model (based on your hardware configuration):
97+
98+
- [2B-SFT](https://huggingface.co/bytedance-research/UI-TARS-2B-SFT)
99+
- [7B-SFT](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT)
100+
- [7B-DPO](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO)
101+
- [72B-SFT](https://huggingface.co/bytedance-research/UI-TARS-72B-SFT)
102+
- [72B-DPO](https://huggingface.co/bytedance-research/UI-TARS-72B-DPO)
70103

71-
We recommend using HuggingFace Inference Endpoints for fast deployment. We provide two docs for users to refer:
72104

73-
[GUI Model Deployment Guide](https://juniper-switch-f10.notion.site/GUI-Model-Deployment-Guide-17b5350241e280058e98cea60317de71)
105+
#### Start an OpenAI API Service
106+
Run the command below to start an OpenAI-compatible API service:
107+
108+
```bash
109+
python -m vllm.entrypoints.openai.api_server --served-model-name ui-tars --model <path to your model>
110+
```
74111

75112

76113
<img src="./images/settings_model.png" width="500px" />

0 commit comments

Comments
 (0)