|
| 1 | +import argparse |
| 2 | +import os |
| 3 | +import subprocess |
| 4 | + |
| 5 | +import cryoet_data_portal as cdp |
| 6 | +import numpy as np |
| 7 | +import zarr |
| 8 | + |
| 9 | +from ome_zarr.io import parse_url |
| 10 | +from ome_zarr.writer import write_image |
| 11 | +from synapse_net.file_utils import read_data_from_cryo_et_portal_run |
| 12 | +from synapse_net.inference.vesicles import segment_vesicles |
| 13 | +from tqdm import tqdm |
| 14 | + |
| 15 | +# OUTPUT_ROOT = "" |
| 16 | +OUTPUT_ROOT = "/mnt/vast-nhr/projects/nim00007/data/synaptic-reconstruction/portal" |
| 17 | + |
| 18 | + |
| 19 | +def get_tomograms(deposition_id, processing_type, number_of_tomograms=None): |
| 20 | + client = cdp.Client() |
| 21 | + tomograms = cdp.Tomogram.find( |
| 22 | + client, [cdp.Tomogram.deposition_id == deposition_id, cdp.Tomogram.processing == processing_type] |
| 23 | + ) |
| 24 | + if number_of_tomograms is not None: |
| 25 | + tomograms = tomograms[:number_of_tomograms] |
| 26 | + return tomograms |
| 27 | + |
| 28 | + |
| 29 | +def write_ome_zarr(output_file, segmentation, voxel_size, unit="nanometer"): |
| 30 | + store = parse_url(output_file, mode="w").store |
| 31 | + root = zarr.group(store=store) |
| 32 | + |
| 33 | + scale = list(voxel_size.values()) |
| 34 | + trafo = [ |
| 35 | + [{"scale": scale, "type": "scale"}] |
| 36 | + ] |
| 37 | + axes = [ |
| 38 | + {"name": "z", "type": "space", "unit": unit}, |
| 39 | + {"name": "y", "type": "space", "unit": unit}, |
| 40 | + {"name": "x", "type": "space", "unit": unit}, |
| 41 | + ] |
| 42 | + write_image(segmentation, root, axes=axes, coordinate_transformations=trafo, scaler=None) |
| 43 | + |
| 44 | + |
| 45 | +def run_prediction(tomogram, deposition_id, processing_type): |
| 46 | + output_folder = os.path.join(OUTPUT_ROOT, f"upload_CZCDP-{deposition_id}", str(tomogram.run.dataset_id)) |
| 47 | + os.makedirs(output_folder, exist_ok=True) |
| 48 | + |
| 49 | + output_file = os.path.join(output_folder, f"{tomogram.run.name}.zarr") |
| 50 | + # We don't need to do anything if this file is already processed. |
| 51 | + if os.path.exists(output_file): |
| 52 | + return |
| 53 | + |
| 54 | + # Read tomogram data on the fly. |
| 55 | + data, voxel_size = read_data_from_cryo_et_portal_run( |
| 56 | + tomogram.run_id, processing_type=processing_type |
| 57 | + ) |
| 58 | + |
| 59 | + # Segment vesicles. |
| 60 | + model_path = "/mnt/lustre-emmy-hdd/projects/nim00007/models/synaptic-reconstruction/vesicle-DA-portal-v3" |
| 61 | + scale = (1.0 / 2.7,) * 3 |
| 62 | + segmentation = segment_vesicles(data, model_path=model_path, scale=scale) |
| 63 | + |
| 64 | + # Save the segmentation. |
| 65 | + write_ome_zarr(output_file, segmentation, voxel_size) |
| 66 | + |
| 67 | + |
| 68 | +# TODO download on lower scale |
| 69 | +def check_result(tomogram, deposition_id, processing_type): |
| 70 | + import napari |
| 71 | + |
| 72 | + # Read tomogram data on the fly. |
| 73 | + print("Download data ...") |
| 74 | + data, voxel_size = read_data_from_cryo_et_portal_run( |
| 75 | + tomogram.run_id, processing_type=processing_type |
| 76 | + ) |
| 77 | + |
| 78 | + # Read the output file if it exists. |
| 79 | + output_folder = os.path.join(f"upload_CZCDP-{deposition_id}", str(tomogram.run.dataset_id)) |
| 80 | + output_file = os.path.join(output_folder, f"{tomogram.run.name}.zarr") |
| 81 | + if os.path.exists(output_file): |
| 82 | + with zarr.open(output_file, "r") as f: |
| 83 | + segmentation = f["0"][:] |
| 84 | + else: |
| 85 | + segmentation = None |
| 86 | + |
| 87 | + v = napari.Viewer() |
| 88 | + v.add_image(data) |
| 89 | + if segmentation is not None: |
| 90 | + v.add_labels(segmentation) |
| 91 | + napari.run() |
| 92 | + |
| 93 | + |
| 94 | +def _get_task_tomograms(tomograms, slurm_tasks, task_id): |
| 95 | + # TODO we could also filter already done tomos. |
| 96 | + inputs_to_tasks = np.array_split(tomograms, slurm_tasks) |
| 97 | + assert len(inputs_to_tasks) == slurm_tasks |
| 98 | + return inputs_to_tasks[task_id] |
| 99 | + |
| 100 | + |
| 101 | +def process_slurm(args, tomograms, deposition_id, processing_type): |
| 102 | + assert not args.check |
| 103 | + task_id = os.environ.get("SLURM_ARRAY_TASK_ID") |
| 104 | + |
| 105 | + if task_id is None: # We are not in the slurm task and submit the job. |
| 106 | + # Assemble the command for submitting a slurm array job. |
| 107 | + script_path = "process_tomograms_on_the_fly.sbatch" |
| 108 | + cmd = ["sbatch", "-a", f"0-{args.slurm_tasks-1}", script_path, "-s", str(args.slurm_tasks)] |
| 109 | + print("Submitting to slurm:") |
| 110 | + print(cmd) |
| 111 | + subprocess.run(cmd) |
| 112 | + else: # We are in the task. |
| 113 | + task_id = int(task_id) |
| 114 | + this_tomograms = _get_task_tomograms(tomograms, args.slurm_tasks, task_id) |
| 115 | + for tomogram in tqdm(this_tomograms, desc="Run prediction for tomograms on-the-fly"): |
| 116 | + run_prediction(tomogram, deposition_id, processing_type) |
| 117 | + |
| 118 | + |
| 119 | +def process_local(args, tomograms, deposition_id, processing_type): |
| 120 | + # Process each tomogram. |
| 121 | + print("Start processing", len(tomograms), "tomograms") |
| 122 | + for tomogram in tqdm(tomograms, desc="Run prediction for tomograms on-the-fly"): |
| 123 | + if args.check: |
| 124 | + check_result(tomogram, deposition_id, processing_type) |
| 125 | + else: |
| 126 | + run_prediction(tomogram, deposition_id, processing_type) |
| 127 | + |
| 128 | + |
| 129 | +def main(): |
| 130 | + parser = argparse.ArgumentParser() |
| 131 | + # Whether to check the result with napari instead of running the prediction. |
| 132 | + parser.add_argument("-c", "--check", action="store_true") |
| 133 | + parser.add_argument("-n", "--number_of_tomograms", type=int, default=None) |
| 134 | + parser.add_argument("-s", "--slurm_tasks", type=int, default=None) |
| 135 | + args = parser.parse_args() |
| 136 | + |
| 137 | + deposition_id = 10313 |
| 138 | + processing_type = "denoised" |
| 139 | + |
| 140 | + # Get all the (processed) tomogram ids in the deposition. |
| 141 | + tomograms = get_tomograms(deposition_id, processing_type, args.number_of_tomograms) |
| 142 | + |
| 143 | + if args.slurm_tasks is None: |
| 144 | + process_local(args, tomograms, deposition_id, processing_type) |
| 145 | + else: |
| 146 | + process_slurm(args, tomograms, deposition_id, processing_type) |
| 147 | + |
| 148 | + |
| 149 | +if __name__ == "__main__": |
| 150 | + main() |
0 commit comments