diff --git "a/ch09-\350\277\207\346\213\237\345\220\210/9.8-over-fitting-and-under-fitting.py" "b/ch09-\350\277\207\346\213\237\345\220\210/9.8-over-fitting-and-under-fitting.py" index e5f4a1518..17920ce76 100644 --- "a/ch09-\350\277\207\346\213\237\345\220\210/9.8-over-fitting-and-under-fitting.py" +++ "b/ch09-\350\277\207\346\213\237\345\220\210/9.8-over-fitting-and-under-fitting.py" @@ -6,6 +6,7 @@ from sklearn.datasets import make_moons from sklearn.model_selection import train_test_split from tensorflow.keras import layers, Sequential, regularizers +from tensorflow.keras.utils import plot_model from mpl_toolkits.mplot3d import Axes3D plt.rcParams['font.size'] = 16 @@ -110,7 +111,7 @@ def dropout_influence(X_train, y_train): for _ in range(5): model.add(layers.Dense(64, activation='relu')) # 添加 n 个 Dropout 层 - if counter < n: + while counter < n: counter += 1 model.add(layers.Dropout(rate=0.5)) @@ -131,6 +132,8 @@ def dropout_influence(X_train, y_train): title = "无Dropout层" if n == 0 else "{0}层 Dropout层".format(n) file = "Dropout_%i.png" % n make_plot(X_train, y_train, title, file, XX, YY, preds, output_dir=OUTPUT_DIR + '/dropout') + modelfile = "dropout_model_%i.png" % n + plot_model(model, OUTPUT_DIR + "/dropout/" + modelfile, show_shapes=True) def build_model_with_regularization(_lambda):