Skip to content

Commit 99acbc9

Browse files
authored
llama : Support intern-s1 (#14875)
* support internvl * support interns1 * resolve comments * put interns1 in tensor mapping * resolve comment * move tokenizer changes to sub class
1 parent 7ad67ba commit 99acbc9

File tree

2 files changed

+122
-2
lines changed

2 files changed

+122
-2
lines changed

convert_hf_to_gguf.py

Lines changed: 107 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3328,7 +3328,13 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
33283328
@ModelBase.register("InternVisionModel")
33293329
class InternVisionModel(MmprojModel):
33303330
def set_gguf_parameters(self):
3331+
assert self.hparams_vision is not None
3332+
if isinstance(self.hparams_vision['image_size'], list):
3333+
self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
3334+
if isinstance(self.hparams_vision['patch_size'], list):
3335+
self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
33313336
super().set_gguf_parameters()
3337+
33323338
hparams = self.hparams
33333339
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
33343340
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
@@ -3352,14 +3358,30 @@ def tensor_force_quant(self, name, new_name, bid, n_dims):
33523358
return gguf.GGMLQuantizationType.F32
33533359
return False
33543360

3361+
def _mapping_interns1_name(self, name):
3362+
names_map = {
3363+
"model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
3364+
"model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
3365+
"model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
3366+
"model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
3367+
"model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
3368+
"model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
3369+
}
3370+
if name in names_map:
3371+
name = names_map[name]
3372+
return name
3373+
33553374
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
33563375
del bid # unused
3357-
if name.startswith("vision_model") or name.startswith("mlp"):
3376+
vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
3377+
# deal with intern-s1 special case
3378+
name = self._mapping_interns1_name(name)
3379+
if any([name.startswith(prefix) for prefix in vision_prefix]):
33583380
# process visual tensors
33593381
# correct name
33603382
if name.startswith("vision_model"):
33613383
name = "vision_tower." + name
3362-
if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
3384+
if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
33633385
name += ".weight"
33643386
# split QKV tensors if needed
33653387
if ".qkv." in name:
@@ -3445,6 +3467,10 @@ def set_gguf_parameters(self):
34453467

34463468
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
34473469
# process the experts separately
3470+
name = name.replace("language_model.", "") # InternVL
3471+
if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
3472+
# skip visual tensors
3473+
return []
34483474
if name.find("experts") != -1:
34493475
n_experts = self.hparams["num_experts"]
34503476
assert bid is not None
@@ -3498,6 +3524,85 @@ class Qwen3Model(Qwen2Model):
34983524
class Qwen3MoeModel(Qwen2MoeModel):
34993525
model_arch = gguf.MODEL_ARCH.QWEN3MOE
35003526

3527+
def __init__(self, *args, **kwargs):
3528+
super().__init__(*args, **kwargs)
3529+
hparams = ModelBase.load_hparams(self.dir_model)
3530+
self.origin_hf_arch = hparams.get('architectures', [None])[0]
3531+
3532+
def set_vocab(self):
3533+
# deal with intern-s1
3534+
if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
3535+
self._set_vocab_interns1()
3536+
return
3537+
3538+
try:
3539+
self._set_vocab_sentencepiece()
3540+
except FileNotFoundError:
3541+
self._set_vocab_gpt2()
3542+
3543+
def _set_vocab_interns1(self):
3544+
tokens: list[str] = []
3545+
toktypes: list[int] = []
3546+
3547+
from transformers import AutoTokenizer
3548+
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
3549+
vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
3550+
vocab_size = self.hparams.get("vocab_size", len(vocab))
3551+
assert max(vocab.values()) < vocab_size
3552+
3553+
tokpre = self.get_vocab_base_pre(tokenizer)
3554+
3555+
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
3556+
added_vocab = tokenizer.get_added_vocab()
3557+
3558+
added_tokens_decoder = tokenizer.added_tokens_decoder
3559+
3560+
for i in range(vocab_size):
3561+
if i not in reverse_vocab:
3562+
tokens.append(f"[PAD{i}]")
3563+
toktypes.append(gguf.TokenType.UNUSED)
3564+
else:
3565+
token: str = reverse_vocab[i]
3566+
if token in added_vocab:
3567+
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
3568+
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
3569+
if not added_tokens_decoder[i].normalized:
3570+
previous_token = token
3571+
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
3572+
if previous_token != token:
3573+
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
3574+
3575+
if added_tokens_decoder[i].special or self.does_token_look_special(token):
3576+
toktypes.append(gguf.TokenType.CONTROL)
3577+
else:
3578+
toktypes.append(gguf.TokenType.USER_DEFINED)
3579+
else:
3580+
toktypes.append(gguf.TokenType.NORMAL)
3581+
tokens.append(token)
3582+
3583+
self.gguf_writer.add_tokenizer_model("gpt2")
3584+
self.gguf_writer.add_tokenizer_pre(tokpre)
3585+
self.gguf_writer.add_token_list(tokens)
3586+
self.gguf_writer.add_token_types(toktypes)
3587+
3588+
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
3589+
special_tokens_map_file = self.dir_model / 'special_tokens_map.json'
3590+
additional_special_tokens = []
3591+
if special_tokens_map_file.is_file():
3592+
with open(special_tokens_map_file, encoding = 'utf-8') as f:
3593+
additional_special_tokens = json.load(f).get('additional_special_tokens', [])
3594+
tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json'
3595+
if tokenizer_cfg_file.is_file():
3596+
with open(tokenizer_cfg_file, encoding = 'utf-8') as f:
3597+
added_tokens_decoder = json.load(f).get('added_tokens_decoder', {})
3598+
token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']}
3599+
for token in additional_special_tokens:
3600+
if token in token2ids_map:
3601+
special_vocab._set_special_token(token, token2ids_map[token])
3602+
special_vocab._set_special_token('eos', 151645)
3603+
special_vocab._set_special_token("bos", 151643)
3604+
special_vocab.add_to_gguf(self.gguf_writer)
3605+
35013606

35023607
@ModelBase.register("GPT2LMHeadModel")
35033608
class GPT2Model(TextModel):

gguf-py/gguf/tensor_mapping.py

Lines changed: 15 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1110,11 +1110,13 @@ class TensorNameMap:
11101110

11111111
MODEL_TENSOR.V_ENC_EMBD_CLS: (
11121112
"vision_tower.vision_model.embeddings.class_embedding",
1113+
"model.vision_tower.embeddings.cls_token", # Intern-S1
11131114
"vision_model.class_embedding", # llama 4
11141115
),
11151116

11161117
MODEL_TENSOR.V_ENC_EMBD_PATCH: (
11171118
"vision_tower.vision_model.embeddings.patch_embedding",
1119+
"model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
11181120
"vpm.embeddings.patch_embedding",
11191121
"model.vision_model.embeddings.patch_embedding", # SmolVLM
11201122
"vision_tower.patch_conv", # pixtral
@@ -1124,13 +1126,15 @@ class TensorNameMap:
11241126

11251127
MODEL_TENSOR.V_ENC_EMBD_POS: (
11261128
"vision_tower.vision_model.embeddings.position_embedding",
1129+
"model.vision_tower.embeddings.position_embeddings", # Intern-S1
11271130
"vpm.embeddings.position_embedding",
11281131
"model.vision_model.embeddings.position_embedding", # SmolVLM
11291132
"vision_model.positional_embedding_vlm", # llama 4
11301133
),
11311134

11321135
MODEL_TENSOR.V_ENC_ATTN_Q: (
11331136
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
1137+
"model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
11341138
"vpm.encoder.layers.{bid}.self_attn.q_proj",
11351139
"model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
11361140
"vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
@@ -1140,10 +1144,12 @@ class TensorNameMap:
11401144

11411145
MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
11421146
"vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
1147+
"model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
11431148
),
11441149

11451150
MODEL_TENSOR.V_ENC_ATTN_K: (
11461151
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
1152+
"model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
11471153
"vpm.encoder.layers.{bid}.self_attn.k_proj",
11481154
"model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
11491155
"vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
@@ -1153,10 +1159,12 @@ class TensorNameMap:
11531159

11541160
MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
11551161
"vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
1162+
"model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
11561163
),
11571164

11581165
MODEL_TENSOR.V_ENC_ATTN_V: (
11591166
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
1167+
"model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
11601168
"vpm.encoder.layers.{bid}.self_attn.v_proj",
11611169
"model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
11621170
"vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
@@ -1167,6 +1175,7 @@ class TensorNameMap:
11671175
MODEL_TENSOR.V_ENC_INPUT_NORM: (
11681176
"vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
11691177
"vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
1178+
"model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
11701179
"vpm.encoder.layers.{bid}.layer_norm1",
11711180
"model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
11721181
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
@@ -1177,6 +1186,7 @@ class TensorNameMap:
11771186
MODEL_TENSOR.V_ENC_ATTN_O: (
11781187
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
11791188
"vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
1189+
"model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
11801190
"vpm.encoder.layers.{bid}.self_attn.out_proj",
11811191
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
11821192
"vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
@@ -1187,6 +1197,7 @@ class TensorNameMap:
11871197
MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
11881198
"vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
11891199
"vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
1200+
"model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
11901201
"vpm.encoder.layers.{bid}.layer_norm2",
11911202
"model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
11921203
"vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
@@ -1196,6 +1207,7 @@ class TensorNameMap:
11961207

11971208
MODEL_TENSOR.V_ENC_FFN_UP: (
11981209
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
1210+
"model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
11991211
"vpm.encoder.layers.{bid}.mlp.fc1",
12001212
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
12011213
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
@@ -1211,6 +1223,7 @@ class TensorNameMap:
12111223

12121224
MODEL_TENSOR.V_ENC_FFN_DOWN: (
12131225
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
1226+
"model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
12141227
"vpm.encoder.layers.{bid}.mlp.fc2",
12151228
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
12161229
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
@@ -1221,10 +1234,12 @@ class TensorNameMap:
12211234

12221235
MODEL_TENSOR.V_LAYER_SCALE_1: (
12231236
"vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
1237+
"model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
12241238
),
12251239

12261240
MODEL_TENSOR.V_LAYER_SCALE_2: (
12271241
"vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
1242+
"model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
12281243
),
12291244

12301245
MODEL_TENSOR.V_PRE_NORM: (

0 commit comments

Comments
 (0)