From 11a449183eabdd6442555226923f725867e89a60 Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra <56443877+Bhavay-2001@users.noreply.github.com> Date: Fri, 5 Apr 2024 15:35:47 +0530 Subject: [PATCH 01/14] Create diffusers.yml --- diffusers.yml | 166 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 166 insertions(+) create mode 100644 diffusers.yml diff --git a/diffusers.yml b/diffusers.yml new file mode 100644 index 000000000000..fc0f93bbf670 --- /dev/null +++ b/diffusers.yml @@ -0,0 +1,166 @@ +name: diffusers +channels: + - defaults +dependencies: + - bzip2=1.0.8=h80987f9_5 + - ca-certificates=2023.12.12=hca03da5_0 + - expat=2.5.0=h313beb8_0 + - libcxx=14.0.6=h848a8c0_0 + - libffi=3.4.4=hca03da5_0 + - ncurses=6.4=h313beb8_0 + - openssl=3.0.13=h1a28f6b_0 + - pip=23.3.1=py312hca03da5_0 + - python=3.12.2=h99e199e_0 + - readline=8.2=h1a28f6b_0 + - setuptools=68.2.2=py312hca03da5_0 + - sqlite=3.41.2=h80987f9_0 + - tk=8.6.12=hb8d0fd4_0 + - wheel=0.41.2=py312hca03da5_0 + - xz=5.4.6=h80987f9_0 + - zlib=1.2.13=h5a0b063_0 + - pip: + - absl-py==2.1.0 + - accelerate==0.27.2 + - aiohttp==3.9.3 + - aiosignal==1.3.1 + - anyio==4.3.0 + - appdirs==1.4.4 + - attrs==23.2.0 + - audioread==3.0.1 + - backoff==2.2.1 + - certifi==2024.2.2 + - cffi==1.16.0 + - charset-normalizer==3.3.2 + - chex==0.1.85 + - clean-fid==0.1.35 + - click==8.1.7 + - clip-anytorch==2.6.0 + - compel==0.1.8 + - datasets==2.18.0 + - dctorch==0.1.2 + - decorator==5.1.1 + - diffusers==0.27.0.dev0 + - dill==0.3.8 + - docker-pycreds==0.4.0 + - einops==0.7.0 + - etils==1.7.0 + - execnet==2.0.2 + - fastjsonschema==2.19.1 + - filelock==3.13.1 + - flax==0.8.1 + - frozenlist==1.4.1 + - fsspec==2024.2.0 + - ftfy==6.1.3 + - gitdb==4.0.11 + - gitpython==3.1.18 + - gql==3.5.0 + - graphql-core==3.2.3 + - grpcio==1.62.0 + - hf-doc-builder==0.4.0 + - huggingface-hub==0.21.3 + - idna==3.6 + - imageio==2.34.0 + - importlib-metadata==7.0.1 + - importlib-resources==6.1.2 + - iniconfig==2.0.0 + - invisible-watermark==0.2.0 + - isort==5.13.2 + - jax==0.4.25 + - jaxlib==0.4.25 + - jinja2==3.1.3 + - joblib==1.3.2 + - jsonmerge==1.9.2 + - jsonschema==4.21.1 + - jsonschema-specifications==2023.12.1 + - jupyter-core==5.7.1 + - k-diffusion==0.1.1.post1 + - kornia==0.7.1 + - lazy-loader==0.3 + - librosa==0.10.1 + - llvmlite==0.42.0 + - markdown==3.5.2 + - markdown-it-py==3.0.0 + - markupsafe==2.1.5 + - mdurl==0.1.2 + - ml-dtypes==0.3.2 + - mpmath==1.3.0 + - msgpack==1.0.8 + - multidict==6.0.5 + - multiprocess==0.70.16 + - nbformat==5.9.2 + - nest-asyncio==1.6.0 + - networkx==3.2.1 + - numba==0.59.0 + - numpy==1.26.4 + - opencv-python==4.9.0.80 + - opt-einsum==3.3.0 + - optax==0.1.9 + - orbax-checkpoint==0.5.3 + - packaging==23.2 + - pandas==2.2.1 + - parameterized==0.9.0 + - peft==0.9.0 + - pillow==10.2.0 + - platformdirs==4.2.0 + - pluggy==1.4.0 + - pooch==1.8.1 + - protobuf==3.20.3 + - psutil==5.9.8 + - pyarrow==15.0.0 + - pyarrow-hotfix==0.6 + - pycparser==2.21 + - pygments==2.17.2 + - pyparsing==3.1.1 + - pytest==8.0.2 + - pytest-timeout==2.2.0 + - pytest-xdist==3.5.0 + - python-dateutil==2.9.0.post0 + - pytz==2024.1 + - pywavelets==1.5.0 + - pyyaml==6.0.1 + - referencing==0.33.0 + - regex==2023.12.25 + - requests==2.31.0 + - requests-mock==1.10.0 + - requests-toolbelt==1.0.0 + - rich==13.7.1 + - rpds-py==0.18.0 + - ruff==0.1.5 + - safetensors==0.4.2 + - scikit-image==0.22.0 + - scikit-learn==1.4.1.post1 + - scipy==1.12.0 + - sentencepiece==0.2.0 + - sentry-sdk==1.40.6 + - setproctitle==1.3.3 + - six==1.16.0 + - smmap==5.0.1 + - sniffio==1.3.1 + - soundfile==0.12.1 + - soxr==0.3.7 + - sympy==1.12 + - tensorboard==2.16.2 + - tensorboard-data-server==0.7.2 + - tensorstore==0.1.54 + - threadpoolctl==3.3.0 + - tifffile==2024.2.12 + - tokenizers==0.15.2 + - toolz==0.12.1 + - torch==2.2.1 + - torchdiffeq==0.2.3 + - torchsde==0.2.6 + - torchvision==0.17.1 + - tqdm==4.66.2 + - traitlets==5.14.1 + - trampoline==0.1.2 + - transformers==4.38.2 + - typing-extensions==4.10.0 + - tzdata==2024.1 + - urllib3==1.26.18 + - wandb==0.16.3 + - wcwidth==0.2.13 + - werkzeug==3.0.1 + - xxhash==3.4.1 + - yarl==1.9.4 + - zipp==3.17.0 +prefix: /Users/shubhammalhotra/Documents/miniconda3/envs/diffusers From 4a4d355901eef18f476c51dc0b226508f08b6366 Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Sun, 14 Jul 2024 23:21:34 +0530 Subject: [PATCH 02/14] Added PAG Pipeline for SD_Controlnet_img2img --- .../pag/pipeline_pag_controlnet_sd_img2img.py | 1297 +++++++++++++++++ 1 file changed, 1297 insertions(+) create mode 100644 src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py diff --git a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py new file mode 100644 index 000000000000..4077457cb2e7 --- /dev/null +++ b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py @@ -0,0 +1,1297 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection + +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import ( + USE_PEFT_BACKEND, + deprecate, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ..controlnet.multicontrolnet import MultiControlNetModel +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from .pag_utils import PAGMixin + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> # !pip install opencv-python transformers accelerate + >>> from diffusers import AutoPipelineForImage2Image, ControlNetModel, UniPCMultistepScheduler + >>> from diffusers.utils import load_image + >>> import numpy as np + >>> import torch + + >>> import cv2 + >>> from PIL import Image + + >>> # download an image + >>> image = load_image( + ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" + ... ) + >>> np_image = np.array(image) + + >>> # get canny image + >>> np_image = cv2.Canny(np_image, 100, 200) + >>> np_image = np_image[:, :, None] + >>> np_image = np.concatenate([np_image, np_image, np_image], axis=2) + >>> canny_image = Image.fromarray(np_image) + + >>> # load control net and stable diffusion v1-5 + >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) + >>> pipe = AutoPipelineForImage2Image.from_pretrained( + ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, enable_pag=True, torch_dtype=torch.float16 + ... ) + + >>> # speed up diffusion process with faster scheduler and memory optimization + >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) + >>> pipe.enable_model_cpu_offload() + + >>> # generate image + >>> generator = torch.manual_seed(0) + >>> image = pipe( + ... "futuristic-looking woman", + ... num_inference_steps=20, + ... generator=generator, + ... image=image, + ... control_image=canny_image, + ... pag_scale=0.3, + ... ).images[0] + ``` +""" + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents +def retrieve_latents( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + + +# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_img2img.prepare_image +def prepare_image(image): + if isinstance(image, torch.Tensor): + # Batch single image + if image.ndim == 3: + image = image.unsqueeze(0) + + image = image.to(dtype=torch.float32) + else: + # preprocess image + if isinstance(image, (PIL.Image.Image, np.ndarray)): + image = [image] + + if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): + image = [np.array(i.convert("RGB"))[None, :] for i in image] + image = np.concatenate(image, axis=0) + elif isinstance(image, list) and isinstance(image[0], np.ndarray): + image = np.concatenate([i[None, :] for i in image], axis=0) + + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + + return image + + +class StableDiffusionControlNetPAGImg2ImgPipeline( + DiffusionPipeline, + StableDiffusionMixin, + TextualInversionLoaderMixin, + LoraLoaderMixin, + IPAdapterMixin, + FromSingleFileMixin, + PAGMixin, +): + r""" + Pipeline for image-to-image generation using Stable Diffusion with ControlNet guidance. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights + - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. + text_encoder ([`~transformers.CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + tokenizer ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + unet ([`UNet2DConditionModel`]): + A `UNet2DConditionModel` to denoise the encoded image latents. + controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): + Provides additional conditioning to the `unet` during the denoising process. If you set multiple + ControlNets as a list, the outputs from each ControlNet are added together to create one combined + additional conditioning. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + safety_checker ([`StableDiffusionSafetyChecker`]): + Classification module that estimates whether generated images could be considered offensive or harmful. + Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + about a model's potential harms. + feature_extractor ([`~transformers.CLIPImageProcessor`]): + A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. + """ + + model_cpu_offload_seq = "text_encoder->unet->vae" + _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] + _exclude_from_cpu_offload = ["safety_checker"] + _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], + scheduler: KarrasDiffusionSchedulers, + safety_checker: StableDiffusionSafetyChecker, + feature_extractor: CLIPImageProcessor, + image_encoder: CLIPVisionModelWithProjection = None, + requires_safety_checker: bool = True, + pag_applied_layers: Union[str, List[str]] = "mid", # ["mid"], ["down.block_1", "up.block_0.attentions_0"] + ): + super().__init__() + + if safety_checker is None and requires_safety_checker: + logger.warning( + f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" + " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" + " results in services or applications open to the public. Both the diffusers team and Hugging Face" + " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" + " it only for use-cases that involve analyzing network behavior or auditing its results. For more" + " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." + ) + + if safety_checker is not None and feature_extractor is None: + raise ValueError( + "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" + " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." + ) + + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + unet=unet, + controlnet=controlnet, + scheduler=scheduler, + safety_checker=safety_checker, + feature_extractor=feature_extractor, + image_encoder=image_encoder, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False + ) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.set_pag_applied_layers(pag_applied_layers) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt + def encode_prompt( + self, + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt=None, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + lora_scale: Optional[float] = None, + clip_skip: Optional[int] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + lora_scale (`float`, *optional*): + A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + """ + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + # textual inversion: process multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder( + text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True + ) + # Access the `hidden_states` first, that contains a tuple of + # all the hidden states from the encoder layers. Then index into + # the tuple to access the hidden states from the desired layer. + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + # We also need to apply the final LayerNorm here to not mess with the + # representations. The `last_hidden_states` that we typically use for + # obtaining the final prompt representations passes through the LayerNorm + # layer. + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [""] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = negative_prompt + + # textual inversion: process multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + + negative_prompt_embeds = self.text_encoder( + uncond_input.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + if self.text_encoder is not None: + if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + return prompt_embeds, negative_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors="pt").pixel_values + + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder( + torch.zeros_like(image), output_hidden_states=True + ).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( + num_images_per_prompt, dim=0 + ) + return image_enc_hidden_states, uncond_image_enc_hidden_states + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + + return image_embeds, uncond_image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds + def prepare_ip_adapter_image_embeds( + self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance + ): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError( + f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." + ) + + for single_ip_adapter_image, image_proj_layer in zip( + ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers + ): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + single_image_embeds, single_negative_image_embeds = self.encode_image( + single_ip_adapter_image, device, 1, output_hidden_state + ) + + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + + ip_adapter_image_embeds = [] + for i, single_image_embeds in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + + return ip_adapter_image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) + image, has_nsfw_concept = self.safety_checker( + images=image, clip_input=safety_checker_input.pixel_values.to(dtype) + ) + return image, has_nsfw_concept + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents + def decode_latents(self, latents): + deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" + deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) + + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_img2img.StableDiffusionControlNetImg2ImgPipeline.check_inputs + def check_inputs( + self, + prompt, + image, + callback_steps, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + ip_adapter_image=None, + ip_adapter_image_embeds=None, + controlnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + callback_on_step_end_tensor_inputs=None, + ): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + # `prompt` needs more sophisticated handling when there are multiple + # conditionings. + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning( + f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" + " prompts. The conditionings will be fixed across the prompts." + ) + + # Check `image` + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.controlnet, torch._dynamo.eval_frame.OptimizedModule + ) + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + self.check_image(image, prompt, prompt_embeds) + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if not isinstance(image, list): + raise TypeError("For multiple controlnets: `image` must be type `list`") + + # When `image` is a nested list: + # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) + elif any(isinstance(i, list) for i in image): + raise ValueError("A single batch of multiple conditionings are supported at the moment.") + elif len(image) != len(self.controlnet.nets): + raise ValueError( + f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." + ) + + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + + # Check `controlnet_conditioning_scale` + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if isinstance(controlnet_conditioning_scale, list): + if any(isinstance(i, list) for i in controlnet_conditioning_scale): + raise ValueError("A single batch of multiple conditionings are supported at the moment.") + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( + self.controlnet.nets + ): + raise ValueError( + "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" + " the same length as the number of controlnets" + ) + else: + assert False + + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError( + f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." + ) + + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError( + f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." + ) + + for start, end in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError( + "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." + ) + + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError( + f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" + ) + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError( + f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" + ) + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + + if ( + not image_is_pil + and not image_is_tensor + and not image_is_np + and not image_is_pil_list + and not image_is_tensor_list + and not image_is_np_list + ): + raise TypeError( + f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" + ) + + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError( + f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" + ) + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image + def prepare_control_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + image = torch.cat([image] * 2) + + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps + def get_timesteps(self, num_inference_steps, strength, device): + # get the original timestep using init_timestep + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError( + f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" + ) + + image = image.to(device=device, dtype=dtype) + + batch_size = batch_size * num_images_per_prompt + + if image.shape[1] == 4: + init_latents = image + + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + elif isinstance(generator, list): + init_latents = [ + retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) + for i in range(batch_size) + ] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + + init_latents = self.vae.config.scaling_factor * init_latents + + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + # expand init_latents for batch_size + deprecation_message = ( + f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" + " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" + " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" + " your script to pass as many initial images as text prompts to suppress this warning." + ) + deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError( + f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." + ) + else: + init_latents = torch.cat([init_latents], dim=0) + + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + + # get latents + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + image: PipelineImageInput = None, + control_image: PipelineImageInput = None, + height: Optional[int] = None, + width: Optional[int] = None, + strength: float = 0.8, + num_inference_steps: int = 50, + guidance_scale: float = 7.5, + negative_prompt: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.Tensor] = None, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_conditioning_scale: Union[float, List[float]] = 0.8, + guess_mode: bool = False, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + clip_skip: Optional[int] = None, + callback_on_step_end: Optional[ + Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] + ] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + pag_scale: float = 3.0, + pag_adaptive_scale: float = 0.0, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: + `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The initial image to be used as the starting point for the image generation process. Can also accept + image latents as `image`, and if passing latents directly they are not encoded again. + control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: + `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The ControlNet input condition to provide guidance to the `unet` for generation. If the type is + specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted + as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or + width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, + images must be passed as a list such that each element of the list can be correctly batched for input + to a single ControlNet. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + strength (`float`, *optional*, defaults to 0.8): + Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a + starting point and more noise is added the higher the `strength`. The number of denoising steps depends + on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising + process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 + essentially ignores `image`. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*, defaults to 7.5): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.Tensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. + ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): + Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of + IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should + contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not + provided, embeddings are computed from the `ip_adapter_image` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set + the corresponding scale as a list. + guess_mode (`bool`, *optional*, defaults to `False`): + The ControlNet encoder tries to recognize the content of the input image even if you remove all + prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): + A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of + each denoising step during the inference. with the following arguments: `callback_on_step_end(self: + DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a + list of all tensors as specified by `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + pag_scale (`float`, *optional*, defaults to 3.0): + The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention + guidance will not be used. + pag_adaptive_scale (`float`, *optional*, defaults to 0.0): + The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is + used. + + Examples: + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, + otherwise a `tuple` is returned where the first element is a list with the generated images and the + second element is a list of `bool`s indicating whether the corresponding generated image contains + "not-safe-for-work" (nsfw) content. + """ + + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + + # align format for control guidance + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + control_guidance_start, control_guidance_end = ( + mult * [control_guidance_start], + mult * [control_guidance_end], + ) + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + control_image, + negative_prompt, + prompt_embeds, + negative_prompt_embeds, + ip_adapter_image, + ip_adapter_image_embeds, + controlnet_conditioning_scale, + control_guidance_start, + control_guidance_end, + callback_on_step_end_tensor_inputs, + ) + + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + + global_pool_conditions = ( + controlnet.config.global_pool_conditions + if isinstance(controlnet, ControlNetModel) + else controlnet.nets[0].config.global_pool_conditions + ) + guess_mode = guess_mode or global_pool_conditions + + # 3. Encode input prompt + text_encoder_lora_scale = ( + self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None + ) + prompt_embeds, negative_prompt_embeds = self.encode_prompt( + prompt, + device, + num_images_per_prompt, + self.do_classifier_free_guidance, + negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=text_encoder_lora_scale, + clip_skip=self.clip_skip, + ) + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance( + prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance + ) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + prompt_embeds = prompt_embeds.to(device) + + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds( + ip_adapter_image, + ip_adapter_image_embeds, + device, + batch_size * num_images_per_prompt, + self.do_classifier_free_guidance, + ) + for i, image_embeds in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + negative_image_embeds, image_embeds = image_embeds.chunk(2) + + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance( + image_embeds, negative_image_embeds, self.do_classifier_free_guidance + ) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + + # 4. Prepare image + image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + + # 5. Prepare controlnet_conditioning_image + if isinstance(controlnet, ControlNetModel): + control_image = self.prepare_control_image( + image=control_image, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=self.do_classifier_free_guidance, + guess_mode=guess_mode, + ) + elif isinstance(controlnet, MultiControlNetModel): + control_images = [] + + for control_image_ in control_image: + control_image_ = self.prepare_control_image( + image=control_image_, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=self.do_classifier_free_guidance, + guess_mode=guess_mode, + ) + + control_images.append(control_image_) + + control_image = control_images + else: + assert False + + # 6. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + self._num_timesteps = len(timesteps) + + # 7. Prepare latent variables + if latents is None: + latents = self.prepare_latents( + image, + latent_timestep, + batch_size, + num_images_per_prompt, + prompt_embeds.dtype, + device, + generator, + ) + + # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 8.1 Add image embeds for IP-Adapter + added_cond_kwargs = ( + {"image_embeds": image_embeds} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None + else None + ) + + # 8.2 Create tensor stating which controlnets to keep + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + + # 9. Denoising loop + with self.progress_bar(total=num_inference_steps): + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = ( + torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + if self.do_classifier_free_guidance + else latents + ) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # controlnet(s) inference + if guess_mode and self.do_classifier_free_guidance: + # Infer ControlNet only for the conditional batch. + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + + down_block_res_samples, mid_block_res_sample = self.controlnet( + control_model_input, + t, + encoder_hidden_states=controlnet_prompt_embeds, + controlnet_cond=control_image, + conditioning_scale=cond_scale, + guess_mode=guess_mode, + return_dict=False, + ) + + if guess_mode and self.do_classifier_free_guidance: + # Infered ControlNet only for the conditional batch. + # To apply the output of ControlNet to both the unconditional and conditional batches, + # add 0 to the unconditional batch to keep it unchanged. + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + + # predict the noise residual + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=self.cross_attention_kwargs, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + # perform guidance + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance( + noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t + ) + elif self.do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) + + # If we do sequential model offloading, let's offload unet and controlnet + # manually for max memory savings + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.unet.to("cpu") + self.controlnet.to("cpu") + torch.cuda.empty_cache() + + if not output_type == "latent": + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ + 0 + ] + image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image, has_nsfw_concept) + + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) From 0127897ae183ae78122c46e2789b5f71fe9f5a74 Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Sun, 14 Jul 2024 23:23:57 +0530 Subject: [PATCH 03/14] Updated pag.md --- docs/source/en/api/pipelines/pag.md | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/docs/source/en/api/pipelines/pag.md b/docs/source/en/api/pipelines/pag.md index abfeb930d5ba..1d796238dbb5 100644 --- a/docs/source/en/api/pipelines/pag.md +++ b/docs/source/en/api/pipelines/pag.md @@ -35,6 +35,11 @@ The abstract from the paper is: - all - __call__ +## StableDiffusionControlNetPAGImg2ImgPipeline +[[autodoc]] StableDiffusionControlNetPAGImg2ImgPipeline + - all + - __call__ + ## StableDiffusionXLPAGImg2ImgPipeline [[autodoc]] StableDiffusionXLPAGImg2ImgPipeline - all From a53f3cb75f49d5566fbd232499f4fefcc163bde6 Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Sun, 14 Jul 2024 23:26:48 +0530 Subject: [PATCH 04/14] Updated src/diffusers/__init__.py --- src/diffusers/__init__.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index 6a6607cc376f..ad3da8a44311 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -303,6 +303,7 @@ "StableDiffusionControlNetImg2ImgPipeline", "StableDiffusionControlNetInpaintPipeline", "StableDiffusionControlNetPAGPipeline", + "StableDiffusionControlNetPAGImg2ImgPipeline", "StableDiffusionControlNetPipeline", "StableDiffusionControlNetXSPipeline", "StableDiffusionDepth2ImgPipeline", @@ -715,6 +716,7 @@ StableDiffusionControlNetImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPAGPipeline, + StableDiffusionControlNetPAGImg2ImgPipeline, StableDiffusionControlNetPipeline, StableDiffusionControlNetXSPipeline, StableDiffusionDepth2ImgPipeline, From dee5c518fa26c156f6c1e94205ffc490ca025dce Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra <56443877+Bhavay-2001@users.noreply.github.com> Date: Sun, 14 Jul 2024 23:29:25 +0530 Subject: [PATCH 05/14] Delete diffusers.yml --- diffusers.yml | 166 -------------------------------------------------- 1 file changed, 166 deletions(-) delete mode 100644 diffusers.yml diff --git a/diffusers.yml b/diffusers.yml deleted file mode 100644 index fc0f93bbf670..000000000000 --- a/diffusers.yml +++ /dev/null @@ -1,166 +0,0 @@ -name: diffusers -channels: - - defaults -dependencies: - - bzip2=1.0.8=h80987f9_5 - - ca-certificates=2023.12.12=hca03da5_0 - - expat=2.5.0=h313beb8_0 - - libcxx=14.0.6=h848a8c0_0 - - libffi=3.4.4=hca03da5_0 - - ncurses=6.4=h313beb8_0 - - openssl=3.0.13=h1a28f6b_0 - - pip=23.3.1=py312hca03da5_0 - - python=3.12.2=h99e199e_0 - - readline=8.2=h1a28f6b_0 - - setuptools=68.2.2=py312hca03da5_0 - - sqlite=3.41.2=h80987f9_0 - - tk=8.6.12=hb8d0fd4_0 - - wheel=0.41.2=py312hca03da5_0 - - xz=5.4.6=h80987f9_0 - - zlib=1.2.13=h5a0b063_0 - - pip: - - absl-py==2.1.0 - - accelerate==0.27.2 - - aiohttp==3.9.3 - - aiosignal==1.3.1 - - anyio==4.3.0 - - appdirs==1.4.4 - - attrs==23.2.0 - - audioread==3.0.1 - - backoff==2.2.1 - - certifi==2024.2.2 - - cffi==1.16.0 - - charset-normalizer==3.3.2 - - chex==0.1.85 - - clean-fid==0.1.35 - - click==8.1.7 - - clip-anytorch==2.6.0 - - compel==0.1.8 - - datasets==2.18.0 - - dctorch==0.1.2 - - decorator==5.1.1 - - diffusers==0.27.0.dev0 - - dill==0.3.8 - - docker-pycreds==0.4.0 - - einops==0.7.0 - - etils==1.7.0 - - execnet==2.0.2 - - fastjsonschema==2.19.1 - - filelock==3.13.1 - - flax==0.8.1 - - frozenlist==1.4.1 - - fsspec==2024.2.0 - - ftfy==6.1.3 - - gitdb==4.0.11 - - gitpython==3.1.18 - - gql==3.5.0 - - graphql-core==3.2.3 - - grpcio==1.62.0 - - hf-doc-builder==0.4.0 - - huggingface-hub==0.21.3 - - idna==3.6 - - imageio==2.34.0 - - importlib-metadata==7.0.1 - - importlib-resources==6.1.2 - - iniconfig==2.0.0 - - invisible-watermark==0.2.0 - - isort==5.13.2 - - jax==0.4.25 - - jaxlib==0.4.25 - - jinja2==3.1.3 - - joblib==1.3.2 - - jsonmerge==1.9.2 - - jsonschema==4.21.1 - - jsonschema-specifications==2023.12.1 - - jupyter-core==5.7.1 - - k-diffusion==0.1.1.post1 - - kornia==0.7.1 - - lazy-loader==0.3 - - librosa==0.10.1 - - llvmlite==0.42.0 - - markdown==3.5.2 - - markdown-it-py==3.0.0 - - markupsafe==2.1.5 - - mdurl==0.1.2 - - ml-dtypes==0.3.2 - - mpmath==1.3.0 - - msgpack==1.0.8 - - multidict==6.0.5 - - multiprocess==0.70.16 - - nbformat==5.9.2 - - nest-asyncio==1.6.0 - - networkx==3.2.1 - - numba==0.59.0 - - numpy==1.26.4 - - opencv-python==4.9.0.80 - - opt-einsum==3.3.0 - - optax==0.1.9 - - orbax-checkpoint==0.5.3 - - packaging==23.2 - - pandas==2.2.1 - - parameterized==0.9.0 - - peft==0.9.0 - - pillow==10.2.0 - - platformdirs==4.2.0 - - pluggy==1.4.0 - - pooch==1.8.1 - - protobuf==3.20.3 - - psutil==5.9.8 - - pyarrow==15.0.0 - - pyarrow-hotfix==0.6 - - pycparser==2.21 - - pygments==2.17.2 - - pyparsing==3.1.1 - - pytest==8.0.2 - - pytest-timeout==2.2.0 - - pytest-xdist==3.5.0 - - python-dateutil==2.9.0.post0 - - pytz==2024.1 - - pywavelets==1.5.0 - - pyyaml==6.0.1 - - referencing==0.33.0 - - regex==2023.12.25 - - requests==2.31.0 - - requests-mock==1.10.0 - - requests-toolbelt==1.0.0 - - rich==13.7.1 - - rpds-py==0.18.0 - - ruff==0.1.5 - - safetensors==0.4.2 - - scikit-image==0.22.0 - - scikit-learn==1.4.1.post1 - - scipy==1.12.0 - - sentencepiece==0.2.0 - - sentry-sdk==1.40.6 - - setproctitle==1.3.3 - - six==1.16.0 - - smmap==5.0.1 - - sniffio==1.3.1 - - soundfile==0.12.1 - - soxr==0.3.7 - - sympy==1.12 - - tensorboard==2.16.2 - - tensorboard-data-server==0.7.2 - - tensorstore==0.1.54 - - threadpoolctl==3.3.0 - - tifffile==2024.2.12 - - tokenizers==0.15.2 - - toolz==0.12.1 - - torch==2.2.1 - - torchdiffeq==0.2.3 - - torchsde==0.2.6 - - torchvision==0.17.1 - - tqdm==4.66.2 - - traitlets==5.14.1 - - trampoline==0.1.2 - - transformers==4.38.2 - - typing-extensions==4.10.0 - - tzdata==2024.1 - - urllib3==1.26.18 - - wandb==0.16.3 - - wcwidth==0.2.13 - - werkzeug==3.0.1 - - xxhash==3.4.1 - - yarl==1.9.4 - - zipp==3.17.0 -prefix: /Users/shubhammalhotra/Documents/miniconda3/envs/diffusers From 5a0cd0544db47093d63a9ce9a1e68f9080d92fb6 Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Sun, 14 Jul 2024 23:32:00 +0530 Subject: [PATCH 06/14] Updated pipelines/__init__.py --- src/diffusers/pipelines/__init__.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index 1d5fd5c2d094..3f3ec4a9171f 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -143,6 +143,7 @@ [ "StableDiffusionPAGPipeline", "StableDiffusionControlNetPAGPipeline", + "StableDiffusionControlNetPAGImg2ImgPipeline", "StableDiffusionXLPAGPipeline", "StableDiffusionXLPAGInpaintPipeline", "StableDiffusionXLControlNetPAGPipeline", @@ -516,6 +517,7 @@ from .musicldm import MusicLDMPipeline from .pag import ( StableDiffusionControlNetPAGPipeline, + StableDiffusionControlNetPAGImg2ImgPipeline, StableDiffusionPAGPipeline, StableDiffusionXLControlNetPAGPipeline, StableDiffusionXLPAGImg2ImgPipeline, From d4ebdadf9fe4c8230e6f019b379806083fef62fe Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Sun, 14 Jul 2024 23:36:38 +0530 Subject: [PATCH 07/14] Updated auto_pipeline --- src/diffusers/pipelines/auto_pipeline.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/src/diffusers/pipelines/auto_pipeline.py b/src/diffusers/pipelines/auto_pipeline.py index f36329a87004..f581e199912e 100644 --- a/src/diffusers/pipelines/auto_pipeline.py +++ b/src/diffusers/pipelines/auto_pipeline.py @@ -48,6 +48,7 @@ from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline from .pag import ( StableDiffusionControlNetPAGPipeline, + StableDiffusionControlNetPAGImg2ImgPipeline, StableDiffusionPAGPipeline, StableDiffusionXLControlNetPAGPipeline, StableDiffusionXLPAGImg2ImgPipeline, @@ -107,6 +108,7 @@ ("kandinsky22", KandinskyV22Img2ImgCombinedPipeline), ("kandinsky3", Kandinsky3Img2ImgPipeline), ("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline), + ("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGImg2ImgPipeline), ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline), ("stable-diffusion-xl-pag", StableDiffusionXLPAGImg2ImgPipeline), ("lcm", LatentConsistencyModelImg2ImgPipeline), From a68f93d61341176ee016ea88d9ecbbaa46da5b9a Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Sun, 14 Jul 2024 23:38:46 +0530 Subject: [PATCH 08/14] Updated pag/__init__ --- src/diffusers/pipelines/pag/__init__.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/src/diffusers/pipelines/pag/__init__.py b/src/diffusers/pipelines/pag/__init__.py index bf14821f3fdb..d584ad45511f 100644 --- a/src/diffusers/pipelines/pag/__init__.py +++ b/src/diffusers/pipelines/pag/__init__.py @@ -23,6 +23,7 @@ _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_pag_controlnet_sd"] = ["StableDiffusionControlNetPAGPipeline"] + _import_structure["pipeline_pag_controlnet_sd_img2img"] = ["StableDiffusionControlNetPAGImg2ImgPipeline"] _import_structure["pipeline_pag_controlnet_sd_xl"] = ["StableDiffusionXLControlNetPAGPipeline"] _import_structure["pipeline_pag_sd"] = ["StableDiffusionPAGPipeline"] _import_structure["pipeline_pag_sd_xl"] = ["StableDiffusionXLPAGPipeline"] @@ -38,6 +39,7 @@ from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_pag_controlnet_sd import StableDiffusionControlNetPAGPipeline + from .pipeline_pag_controlnet_sd_img2img import StableDiffusionControlNetPAGImg2ImgPipeline from .pipeline_pag_controlnet_sd_xl import StableDiffusionXLControlNetPAGPipeline from .pipeline_pag_sd import StableDiffusionPAGPipeline from .pipeline_pag_sd_xl import StableDiffusionXLPAGPipeline From 1f5c0e85dfe1aebe75e267d876995e12eda2dd6a Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Sun, 14 Jul 2024 23:46:51 +0530 Subject: [PATCH 09/14] Updated dummy_torch_and_transformers_objects.py --- .../utils/dummy_torch_and_transformers_objects.py | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/src/diffusers/utils/dummy_torch_and_transformers_objects.py b/src/diffusers/utils/dummy_torch_and_transformers_objects.py index 399656d8c185..311757e9bb28 100644 --- a/src/diffusers/utils/dummy_torch_and_transformers_objects.py +++ b/src/diffusers/utils/dummy_torch_and_transformers_objects.py @@ -1547,6 +1547,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) +class StableDiffusionControlNetPAGImg2ImgPipeline(metaclass=DummyObject): + _backends = ["torch", "transformers"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch", "transformers"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + class StableDiffusionXLControlNetPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] From d14cf46244fe2c1cab63f115af439688923e82f6 Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Mon, 15 Jul 2024 23:18:34 +0530 Subject: [PATCH 10/14] Updated the file --- .../pag/pipeline_pag_controlnet_sd_img2img.py | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py index 4077457cb2e7..42072dbbc579 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py @@ -639,6 +639,7 @@ def check_inputs( or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel) ): + print(type(controlnet_conditioning_scale)) if not isinstance(controlnet_conditioning_scale, float): raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") elif ( @@ -1171,7 +1172,7 @@ def __call__( # 8.1 Add image embeds for IP-Adapter added_cond_kwargs = ( - {"image_embeds": image_embeds} + {"image_embeds": ip_adapter_image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None ) @@ -1186,14 +1187,11 @@ def __call__( controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) # 9. Denoising loop - with self.progress_bar(total=num_inference_steps): + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance - latent_model_input = ( - torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) - if self.do_classifier_free_guidance - else latents - ) + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # controlnet(s) inference @@ -1265,6 +1263,10 @@ def __call__( prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + # If we do sequential model offloading, let's offload unet and controlnet # manually for max memory savings if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: From 89135670af076a88ad2b1a99f30dca5813d9a11c Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Mon, 15 Jul 2024 23:23:34 +0530 Subject: [PATCH 11/14] Updated the file --- .../pipelines/pag/pipeline_pag_controlnet_sd_img2img.py | 1 - 1 file changed, 1 deletion(-) diff --git a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py index 42072dbbc579..5b9add0754ff 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py @@ -639,7 +639,6 @@ def check_inputs( or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel) ): - print(type(controlnet_conditioning_scale)) if not isinstance(controlnet_conditioning_scale, float): raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") elif ( From b4a27f72363513ef300e6b58c1c4b11c48f12306 Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Sun, 28 Jul 2024 16:04:41 +0530 Subject: [PATCH 12/14] Removed callbacks --- .../pipelines/pag/pipeline_pag_controlnet_sd_img2img.py | 9 ++------- 1 file changed, 2 insertions(+), 7 deletions(-) diff --git a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py index 5b9add0754ff..015321f9503a 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py @@ -542,7 +542,6 @@ def check_inputs( self, prompt, image, - callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, @@ -553,12 +552,6 @@ def check_inputs( control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None, ): - if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): - raise ValueError( - f"`callback_steps` has to be a positive integer but is {callback_steps} of type" - f" {type(callback_steps)}." - ) - if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): @@ -639,6 +632,7 @@ def check_inputs( or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel) ): + print(controlnet_conditioning_scale) if not isinstance(controlnet_conditioning_scale, float): raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") elif ( @@ -1019,6 +1013,7 @@ def __call__( mult * [control_guidance_start], mult * [control_guidance_end], ) + print(controlnet_conditioning_scale) # 1. Check inputs. Raise error if not correct self.check_inputs( From 602991d0307c22f324110e34252a81ce000bc1c8 Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Sun, 28 Jul 2024 16:16:17 +0530 Subject: [PATCH 13/14] Removed callbacks --- .../pipelines/pag/pipeline_pag_controlnet_sd_img2img.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py index 015321f9503a..4757ef915591 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_img2img.py @@ -632,7 +632,6 @@ def check_inputs( or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel) ): - print(controlnet_conditioning_scale) if not isinstance(controlnet_conditioning_scale, float): raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") elif ( @@ -1013,7 +1012,6 @@ def __call__( mult * [control_guidance_start], mult * [control_guidance_end], ) - print(controlnet_conditioning_scale) # 1. Check inputs. Raise error if not correct self.check_inputs( From fae6fea5ff690ba633c896a54dc5af9539bfc228 Mon Sep 17 00:00:00 2001 From: Bhavay Malhotra Date: Mon, 29 Jul 2024 13:18:53 +0530 Subject: [PATCH 14/14] Tried changes for tests to pass --- src/diffusers/__init__.py | 4 ++-- src/diffusers/pipelines/__init__.py | 2 +- src/diffusers/pipelines/auto_pipeline.py | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index 8c51053bf4ce..fe3522131f1a 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -304,8 +304,8 @@ "StableDiffusionAttendAndExcitePipeline", "StableDiffusionControlNetImg2ImgPipeline", "StableDiffusionControlNetInpaintPipeline", - "StableDiffusionControlNetPAGPipeline", "StableDiffusionControlNetPAGImg2ImgPipeline", + "StableDiffusionControlNetPAGPipeline", "StableDiffusionControlNetPipeline", "StableDiffusionControlNetXSPipeline", "StableDiffusionDepth2ImgPipeline", @@ -719,8 +719,8 @@ StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline, - StableDiffusionControlNetPAGPipeline, StableDiffusionControlNetPAGImg2ImgPipeline, + StableDiffusionControlNetPAGPipeline, StableDiffusionControlNetPipeline, StableDiffusionControlNetXSPipeline, StableDiffusionDepth2ImgPipeline, diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index 427d7af08e80..941d13068065 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -522,8 +522,8 @@ ) from .musicldm import MusicLDMPipeline from .pag import ( - StableDiffusionControlNetPAGPipeline, StableDiffusionControlNetPAGImg2ImgPipeline, + StableDiffusionControlNetPAGPipeline, StableDiffusionPAGPipeline, StableDiffusionXLControlNetPAGPipeline, StableDiffusionXLPAGImg2ImgPipeline, diff --git a/src/diffusers/pipelines/auto_pipeline.py b/src/diffusers/pipelines/auto_pipeline.py index 709e7f1dc234..c761f950f877 100644 --- a/src/diffusers/pipelines/auto_pipeline.py +++ b/src/diffusers/pipelines/auto_pipeline.py @@ -49,8 +49,8 @@ from .kolors import KolorsImg2ImgPipeline, KolorsPipeline from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline from .pag import ( - StableDiffusionControlNetPAGPipeline, StableDiffusionControlNetPAGImg2ImgPipeline, + StableDiffusionControlNetPAGPipeline, StableDiffusionPAGPipeline, StableDiffusionXLControlNetPAGPipeline, StableDiffusionXLPAGImg2ImgPipeline,